This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "At most one" property of equality (split into 3 cases). (The first two hypotheses could be eliminated with longer proof.) (Contributed by NM, 23-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | moeq3.1 | ⊢ 𝐵 ∈ V | |
| moeq3.2 | ⊢ 𝐶 ∈ V | ||
| moeq3.3 | ⊢ ¬ ( 𝜑 ∧ 𝜓 ) | ||
| Assertion | moeq3 | ⊢ ∃* 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moeq3.1 | ⊢ 𝐵 ∈ V | |
| 2 | moeq3.2 | ⊢ 𝐶 ∈ V | |
| 3 | moeq3.3 | ⊢ ¬ ( 𝜑 ∧ 𝜓 ) | |
| 4 | eqeq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) | |
| 5 | 4 | anbi2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ↔ ( 𝜑 ∧ 𝑥 = 𝐴 ) ) ) |
| 6 | biidd | ⊢ ( 𝑦 = 𝐴 → ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ) ) | |
| 7 | biidd | ⊢ ( 𝑦 = 𝐴 → ( ( 𝜓 ∧ 𝑥 = 𝐶 ) ↔ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) | |
| 8 | 5 6 7 | 3orbi123d | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 9 | 8 | eubidv | ⊢ ( 𝑦 = 𝐴 → ( ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 10 | vex | ⊢ 𝑦 ∈ V | |
| 11 | 10 1 2 3 | eueq3 | ⊢ ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) |
| 12 | 9 11 | vtoclg | ⊢ ( 𝐴 ∈ V → ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 13 | eumo | ⊢ ( ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ∃* 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐴 ∈ V → ∃* 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 15 | eqvisset | ⊢ ( 𝑥 = 𝐴 → 𝐴 ∈ V ) | |
| 16 | pm2.21 | ⊢ ( ¬ 𝐴 ∈ V → ( 𝐴 ∈ V → 𝑥 = 𝑦 ) ) | |
| 17 | 15 16 | syl5 | ⊢ ( ¬ 𝐴 ∈ V → ( 𝑥 = 𝐴 → 𝑥 = 𝑦 ) ) |
| 18 | 17 | anim2d | ⊢ ( ¬ 𝐴 ∈ V → ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜑 ∧ 𝑥 = 𝑦 ) ) ) |
| 19 | 18 | orim1d | ⊢ ( ¬ 𝐴 ∈ V → ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) → ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) ) |
| 20 | 3orass | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) | |
| 21 | 3orass | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) | |
| 22 | 19 20 21 | 3imtr4g | ⊢ ( ¬ 𝐴 ∈ V → ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 23 | 22 | alrimiv | ⊢ ( ¬ 𝐴 ∈ V → ∀ 𝑥 ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) |
| 24 | euimmo | ⊢ ( ∀ 𝑥 ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) → ( ∃! 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝑦 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) → ∃* 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) ) | |
| 25 | 23 11 24 | mpisyl | ⊢ ( ¬ 𝐴 ∈ V → ∃* 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) ) |
| 26 | 14 25 | pm2.61i | ⊢ ∃* 𝑥 ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∨ ( ¬ ( 𝜑 ∨ 𝜓 ) ∧ 𝑥 = 𝐵 ) ∨ ( 𝜓 ∧ 𝑥 = 𝐶 ) ) |