This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordered pair abstraction G defined in the hypothesis is a function. This was a lemma for tz7.44-1 , tz7.44-2 , and tz7.44-3 when they used that definition of G . Now, they use the maps-to df-mpt idiom so this lemma is not needed anymore, but is kept in case other applications (for instance in intuitionistic set theory) need it. (Contributed by NM, 23-Apr-1995) (Revised by David Abernethy, 19-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tz7.44lem1.1 | |- G = { <. x , y >. | ( ( x = (/) /\ y = A ) \/ ( -. ( x = (/) \/ Lim dom x ) /\ y = ( H ` ( x ` U. dom x ) ) ) \/ ( Lim dom x /\ y = U. ran x ) ) } |
|
| Assertion | tz7.44lem1 | |- Fun G |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz7.44lem1.1 | |- G = { <. x , y >. | ( ( x = (/) /\ y = A ) \/ ( -. ( x = (/) \/ Lim dom x ) /\ y = ( H ` ( x ` U. dom x ) ) ) \/ ( Lim dom x /\ y = U. ran x ) ) } |
|
| 2 | funopab | |- ( Fun { <. x , y >. | ( ( x = (/) /\ y = A ) \/ ( -. ( x = (/) \/ Lim dom x ) /\ y = ( H ` ( x ` U. dom x ) ) ) \/ ( Lim dom x /\ y = U. ran x ) ) } <-> A. x E* y ( ( x = (/) /\ y = A ) \/ ( -. ( x = (/) \/ Lim dom x ) /\ y = ( H ` ( x ` U. dom x ) ) ) \/ ( Lim dom x /\ y = U. ran x ) ) ) |
|
| 3 | fvex | |- ( H ` ( x ` U. dom x ) ) e. _V |
|
| 4 | vex | |- x e. _V |
|
| 5 | rnexg | |- ( x e. _V -> ran x e. _V ) |
|
| 6 | uniexg | |- ( ran x e. _V -> U. ran x e. _V ) |
|
| 7 | 4 5 6 | mp2b | |- U. ran x e. _V |
| 8 | nlim0 | |- -. Lim (/) |
|
| 9 | dm0 | |- dom (/) = (/) |
|
| 10 | limeq | |- ( dom (/) = (/) -> ( Lim dom (/) <-> Lim (/) ) ) |
|
| 11 | 9 10 | ax-mp | |- ( Lim dom (/) <-> Lim (/) ) |
| 12 | 8 11 | mtbir | |- -. Lim dom (/) |
| 13 | dmeq | |- ( x = (/) -> dom x = dom (/) ) |
|
| 14 | limeq | |- ( dom x = dom (/) -> ( Lim dom x <-> Lim dom (/) ) ) |
|
| 15 | 13 14 | syl | |- ( x = (/) -> ( Lim dom x <-> Lim dom (/) ) ) |
| 16 | 15 | biimpa | |- ( ( x = (/) /\ Lim dom x ) -> Lim dom (/) ) |
| 17 | 12 16 | mto | |- -. ( x = (/) /\ Lim dom x ) |
| 18 | 3 7 17 | moeq3 | |- E* y ( ( x = (/) /\ y = A ) \/ ( -. ( x = (/) \/ Lim dom x ) /\ y = ( H ` ( x ` U. dom x ) ) ) \/ ( Lim dom x /\ y = U. ran x ) ) |
| 19 | 2 18 | mpgbir | |- Fun { <. x , y >. | ( ( x = (/) /\ y = A ) \/ ( -. ( x = (/) \/ Lim dom x ) /\ y = ( H ` ( x ` U. dom x ) ) ) \/ ( Lim dom x /\ y = U. ran x ) ) } |
| 20 | 1 | funeqi | |- ( Fun G <-> Fun { <. x , y >. | ( ( x = (/) /\ y = A ) \/ ( -. ( x = (/) \/ Lim dom x ) /\ y = ( H ` ( x ` U. dom x ) ) ) \/ ( Lim dom x /\ y = U. ran x ) ) } ) |
| 21 | 19 20 | mpbir | |- Fun G |