This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txdis | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝒫 𝐴 ×t 𝒫 𝐵 ) = 𝒫 ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop | ⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top ) | |
| 2 | distop | ⊢ ( 𝐵 ∈ 𝑊 → 𝒫 𝐵 ∈ Top ) | |
| 3 | unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 4 | 3 | eqcomi | ⊢ 𝐴 = ∪ 𝒫 𝐴 |
| 5 | unipw | ⊢ ∪ 𝒫 𝐵 = 𝐵 | |
| 6 | 5 | eqcomi | ⊢ 𝐵 = ∪ 𝒫 𝐵 |
| 7 | 4 6 | txuni | ⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝒫 𝐵 ∈ Top ) → ( 𝐴 × 𝐵 ) = ∪ ( 𝒫 𝐴 ×t 𝒫 𝐵 ) ) |
| 8 | 1 2 7 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 × 𝐵 ) = ∪ ( 𝒫 𝐴 ×t 𝒫 𝐵 ) ) |
| 9 | eqimss2 | ⊢ ( ( 𝐴 × 𝐵 ) = ∪ ( 𝒫 𝐴 ×t 𝒫 𝐵 ) → ∪ ( 𝒫 𝐴 ×t 𝒫 𝐵 ) ⊆ ( 𝐴 × 𝐵 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∪ ( 𝒫 𝐴 ×t 𝒫 𝐵 ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 11 | sspwuni | ⊢ ( ( 𝒫 𝐴 ×t 𝒫 𝐵 ) ⊆ 𝒫 ( 𝐴 × 𝐵 ) ↔ ∪ ( 𝒫 𝐴 ×t 𝒫 𝐵 ) ⊆ ( 𝐴 × 𝐵 ) ) | |
| 12 | 10 11 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝒫 𝐴 ×t 𝒫 𝐵 ) ⊆ 𝒫 ( 𝐴 × 𝐵 ) ) |
| 13 | elelpwi | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) → 𝑦 ∈ ( 𝐴 × 𝐵 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ) → 𝑦 ∈ ( 𝐴 × 𝐵 ) ) |
| 15 | xp1st | ⊢ ( 𝑦 ∈ ( 𝐴 × 𝐵 ) → ( 1st ‘ 𝑦 ) ∈ 𝐴 ) | |
| 16 | snelpwi | ⊢ ( ( 1st ‘ 𝑦 ) ∈ 𝐴 → { ( 1st ‘ 𝑦 ) } ∈ 𝒫 𝐴 ) | |
| 17 | 14 15 16 | 3syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ) → { ( 1st ‘ 𝑦 ) } ∈ 𝒫 𝐴 ) |
| 18 | xp2nd | ⊢ ( 𝑦 ∈ ( 𝐴 × 𝐵 ) → ( 2nd ‘ 𝑦 ) ∈ 𝐵 ) | |
| 19 | snelpwi | ⊢ ( ( 2nd ‘ 𝑦 ) ∈ 𝐵 → { ( 2nd ‘ 𝑦 ) } ∈ 𝒫 𝐵 ) | |
| 20 | 14 18 19 | 3syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ) → { ( 2nd ‘ 𝑦 ) } ∈ 𝒫 𝐵 ) |
| 21 | vsnid | ⊢ 𝑦 ∈ { 𝑦 } | |
| 22 | 1st2nd2 | ⊢ ( 𝑦 ∈ ( 𝐴 × 𝐵 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) | |
| 23 | 14 22 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 24 | 23 | sneqd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ) → { 𝑦 } = { 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 } ) |
| 25 | 21 24 | eleqtrid | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ) → 𝑦 ∈ { 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 } ) |
| 26 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ) → 𝑦 ∈ 𝑥 ) | |
| 27 | 23 26 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∈ 𝑥 ) |
| 28 | 27 | snssd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ) → { 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 } ⊆ 𝑥 ) |
| 29 | xpeq1 | ⊢ ( 𝑧 = { ( 1st ‘ 𝑦 ) } → ( 𝑧 × 𝑤 ) = ( { ( 1st ‘ 𝑦 ) } × 𝑤 ) ) | |
| 30 | 29 | eleq2d | ⊢ ( 𝑧 = { ( 1st ‘ 𝑦 ) } → ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ↔ 𝑦 ∈ ( { ( 1st ‘ 𝑦 ) } × 𝑤 ) ) ) |
| 31 | 29 | sseq1d | ⊢ ( 𝑧 = { ( 1st ‘ 𝑦 ) } → ( ( 𝑧 × 𝑤 ) ⊆ 𝑥 ↔ ( { ( 1st ‘ 𝑦 ) } × 𝑤 ) ⊆ 𝑥 ) ) |
| 32 | 30 31 | anbi12d | ⊢ ( 𝑧 = { ( 1st ‘ 𝑦 ) } → ( ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ↔ ( 𝑦 ∈ ( { ( 1st ‘ 𝑦 ) } × 𝑤 ) ∧ ( { ( 1st ‘ 𝑦 ) } × 𝑤 ) ⊆ 𝑥 ) ) ) |
| 33 | xpeq2 | ⊢ ( 𝑤 = { ( 2nd ‘ 𝑦 ) } → ( { ( 1st ‘ 𝑦 ) } × 𝑤 ) = ( { ( 1st ‘ 𝑦 ) } × { ( 2nd ‘ 𝑦 ) } ) ) | |
| 34 | fvex | ⊢ ( 1st ‘ 𝑦 ) ∈ V | |
| 35 | fvex | ⊢ ( 2nd ‘ 𝑦 ) ∈ V | |
| 36 | 34 35 | xpsn | ⊢ ( { ( 1st ‘ 𝑦 ) } × { ( 2nd ‘ 𝑦 ) } ) = { 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 } |
| 37 | 33 36 | eqtrdi | ⊢ ( 𝑤 = { ( 2nd ‘ 𝑦 ) } → ( { ( 1st ‘ 𝑦 ) } × 𝑤 ) = { 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 } ) |
| 38 | 37 | eleq2d | ⊢ ( 𝑤 = { ( 2nd ‘ 𝑦 ) } → ( 𝑦 ∈ ( { ( 1st ‘ 𝑦 ) } × 𝑤 ) ↔ 𝑦 ∈ { 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 } ) ) |
| 39 | 37 | sseq1d | ⊢ ( 𝑤 = { ( 2nd ‘ 𝑦 ) } → ( ( { ( 1st ‘ 𝑦 ) } × 𝑤 ) ⊆ 𝑥 ↔ { 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 } ⊆ 𝑥 ) ) |
| 40 | 38 39 | anbi12d | ⊢ ( 𝑤 = { ( 2nd ‘ 𝑦 ) } → ( ( 𝑦 ∈ ( { ( 1st ‘ 𝑦 ) } × 𝑤 ) ∧ ( { ( 1st ‘ 𝑦 ) } × 𝑤 ) ⊆ 𝑥 ) ↔ ( 𝑦 ∈ { 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 } ∧ { 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 } ⊆ 𝑥 ) ) ) |
| 41 | 32 40 | rspc2ev | ⊢ ( ( { ( 1st ‘ 𝑦 ) } ∈ 𝒫 𝐴 ∧ { ( 2nd ‘ 𝑦 ) } ∈ 𝒫 𝐵 ∧ ( 𝑦 ∈ { 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 } ∧ { 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 } ⊆ 𝑥 ) ) → ∃ 𝑧 ∈ 𝒫 𝐴 ∃ 𝑤 ∈ 𝒫 𝐵 ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) |
| 42 | 17 20 25 28 41 | syl112anc | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) ) ) → ∃ 𝑧 ∈ 𝒫 𝐴 ∃ 𝑤 ∈ 𝒫 𝐵 ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) |
| 43 | 42 | expr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) → ∃ 𝑧 ∈ 𝒫 𝐴 ∃ 𝑤 ∈ 𝒫 𝐵 ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) ) |
| 44 | 43 | ralrimdva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) → ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝒫 𝐴 ∃ 𝑤 ∈ 𝒫 𝐵 ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) ) |
| 45 | eltx | ⊢ ( ( 𝒫 𝐴 ∈ Top ∧ 𝒫 𝐵 ∈ Top ) → ( 𝑥 ∈ ( 𝒫 𝐴 ×t 𝒫 𝐵 ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝒫 𝐴 ∃ 𝑤 ∈ 𝒫 𝐵 ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) ) | |
| 46 | 1 2 45 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ ( 𝒫 𝐴 ×t 𝒫 𝐵 ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝒫 𝐴 ∃ 𝑤 ∈ 𝒫 𝐵 ( 𝑦 ∈ ( 𝑧 × 𝑤 ) ∧ ( 𝑧 × 𝑤 ) ⊆ 𝑥 ) ) ) |
| 47 | 44 46 | sylibrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝑥 ∈ 𝒫 ( 𝐴 × 𝐵 ) → 𝑥 ∈ ( 𝒫 𝐴 ×t 𝒫 𝐵 ) ) ) |
| 48 | 47 | ssrdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝒫 ( 𝐴 × 𝐵 ) ⊆ ( 𝒫 𝐴 ×t 𝒫 𝐵 ) ) |
| 49 | 12 48 | eqssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝒫 𝐴 ×t 𝒫 𝐵 ) = 𝒫 ( 𝐴 × 𝐵 ) ) |