This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txdis | |- ( ( A e. V /\ B e. W ) -> ( ~P A tX ~P B ) = ~P ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distop | |- ( A e. V -> ~P A e. Top ) |
|
| 2 | distop | |- ( B e. W -> ~P B e. Top ) |
|
| 3 | unipw | |- U. ~P A = A |
|
| 4 | 3 | eqcomi | |- A = U. ~P A |
| 5 | unipw | |- U. ~P B = B |
|
| 6 | 5 | eqcomi | |- B = U. ~P B |
| 7 | 4 6 | txuni | |- ( ( ~P A e. Top /\ ~P B e. Top ) -> ( A X. B ) = U. ( ~P A tX ~P B ) ) |
| 8 | 1 2 7 | syl2an | |- ( ( A e. V /\ B e. W ) -> ( A X. B ) = U. ( ~P A tX ~P B ) ) |
| 9 | eqimss2 | |- ( ( A X. B ) = U. ( ~P A tX ~P B ) -> U. ( ~P A tX ~P B ) C_ ( A X. B ) ) |
|
| 10 | 8 9 | syl | |- ( ( A e. V /\ B e. W ) -> U. ( ~P A tX ~P B ) C_ ( A X. B ) ) |
| 11 | sspwuni | |- ( ( ~P A tX ~P B ) C_ ~P ( A X. B ) <-> U. ( ~P A tX ~P B ) C_ ( A X. B ) ) |
|
| 12 | 10 11 | sylibr | |- ( ( A e. V /\ B e. W ) -> ( ~P A tX ~P B ) C_ ~P ( A X. B ) ) |
| 13 | elelpwi | |- ( ( y e. x /\ x e. ~P ( A X. B ) ) -> y e. ( A X. B ) ) |
|
| 14 | 13 | adantl | |- ( ( ( A e. V /\ B e. W ) /\ ( y e. x /\ x e. ~P ( A X. B ) ) ) -> y e. ( A X. B ) ) |
| 15 | xp1st | |- ( y e. ( A X. B ) -> ( 1st ` y ) e. A ) |
|
| 16 | snelpwi | |- ( ( 1st ` y ) e. A -> { ( 1st ` y ) } e. ~P A ) |
|
| 17 | 14 15 16 | 3syl | |- ( ( ( A e. V /\ B e. W ) /\ ( y e. x /\ x e. ~P ( A X. B ) ) ) -> { ( 1st ` y ) } e. ~P A ) |
| 18 | xp2nd | |- ( y e. ( A X. B ) -> ( 2nd ` y ) e. B ) |
|
| 19 | snelpwi | |- ( ( 2nd ` y ) e. B -> { ( 2nd ` y ) } e. ~P B ) |
|
| 20 | 14 18 19 | 3syl | |- ( ( ( A e. V /\ B e. W ) /\ ( y e. x /\ x e. ~P ( A X. B ) ) ) -> { ( 2nd ` y ) } e. ~P B ) |
| 21 | vsnid | |- y e. { y } |
|
| 22 | 1st2nd2 | |- ( y e. ( A X. B ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
|
| 23 | 14 22 | syl | |- ( ( ( A e. V /\ B e. W ) /\ ( y e. x /\ x e. ~P ( A X. B ) ) ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 24 | 23 | sneqd | |- ( ( ( A e. V /\ B e. W ) /\ ( y e. x /\ x e. ~P ( A X. B ) ) ) -> { y } = { <. ( 1st ` y ) , ( 2nd ` y ) >. } ) |
| 25 | 21 24 | eleqtrid | |- ( ( ( A e. V /\ B e. W ) /\ ( y e. x /\ x e. ~P ( A X. B ) ) ) -> y e. { <. ( 1st ` y ) , ( 2nd ` y ) >. } ) |
| 26 | simprl | |- ( ( ( A e. V /\ B e. W ) /\ ( y e. x /\ x e. ~P ( A X. B ) ) ) -> y e. x ) |
|
| 27 | 23 26 | eqeltrrd | |- ( ( ( A e. V /\ B e. W ) /\ ( y e. x /\ x e. ~P ( A X. B ) ) ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. e. x ) |
| 28 | 27 | snssd | |- ( ( ( A e. V /\ B e. W ) /\ ( y e. x /\ x e. ~P ( A X. B ) ) ) -> { <. ( 1st ` y ) , ( 2nd ` y ) >. } C_ x ) |
| 29 | xpeq1 | |- ( z = { ( 1st ` y ) } -> ( z X. w ) = ( { ( 1st ` y ) } X. w ) ) |
|
| 30 | 29 | eleq2d | |- ( z = { ( 1st ` y ) } -> ( y e. ( z X. w ) <-> y e. ( { ( 1st ` y ) } X. w ) ) ) |
| 31 | 29 | sseq1d | |- ( z = { ( 1st ` y ) } -> ( ( z X. w ) C_ x <-> ( { ( 1st ` y ) } X. w ) C_ x ) ) |
| 32 | 30 31 | anbi12d | |- ( z = { ( 1st ` y ) } -> ( ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) <-> ( y e. ( { ( 1st ` y ) } X. w ) /\ ( { ( 1st ` y ) } X. w ) C_ x ) ) ) |
| 33 | xpeq2 | |- ( w = { ( 2nd ` y ) } -> ( { ( 1st ` y ) } X. w ) = ( { ( 1st ` y ) } X. { ( 2nd ` y ) } ) ) |
|
| 34 | fvex | |- ( 1st ` y ) e. _V |
|
| 35 | fvex | |- ( 2nd ` y ) e. _V |
|
| 36 | 34 35 | xpsn | |- ( { ( 1st ` y ) } X. { ( 2nd ` y ) } ) = { <. ( 1st ` y ) , ( 2nd ` y ) >. } |
| 37 | 33 36 | eqtrdi | |- ( w = { ( 2nd ` y ) } -> ( { ( 1st ` y ) } X. w ) = { <. ( 1st ` y ) , ( 2nd ` y ) >. } ) |
| 38 | 37 | eleq2d | |- ( w = { ( 2nd ` y ) } -> ( y e. ( { ( 1st ` y ) } X. w ) <-> y e. { <. ( 1st ` y ) , ( 2nd ` y ) >. } ) ) |
| 39 | 37 | sseq1d | |- ( w = { ( 2nd ` y ) } -> ( ( { ( 1st ` y ) } X. w ) C_ x <-> { <. ( 1st ` y ) , ( 2nd ` y ) >. } C_ x ) ) |
| 40 | 38 39 | anbi12d | |- ( w = { ( 2nd ` y ) } -> ( ( y e. ( { ( 1st ` y ) } X. w ) /\ ( { ( 1st ` y ) } X. w ) C_ x ) <-> ( y e. { <. ( 1st ` y ) , ( 2nd ` y ) >. } /\ { <. ( 1st ` y ) , ( 2nd ` y ) >. } C_ x ) ) ) |
| 41 | 32 40 | rspc2ev | |- ( ( { ( 1st ` y ) } e. ~P A /\ { ( 2nd ` y ) } e. ~P B /\ ( y e. { <. ( 1st ` y ) , ( 2nd ` y ) >. } /\ { <. ( 1st ` y ) , ( 2nd ` y ) >. } C_ x ) ) -> E. z e. ~P A E. w e. ~P B ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) |
| 42 | 17 20 25 28 41 | syl112anc | |- ( ( ( A e. V /\ B e. W ) /\ ( y e. x /\ x e. ~P ( A X. B ) ) ) -> E. z e. ~P A E. w e. ~P B ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) |
| 43 | 42 | expr | |- ( ( ( A e. V /\ B e. W ) /\ y e. x ) -> ( x e. ~P ( A X. B ) -> E. z e. ~P A E. w e. ~P B ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) ) |
| 44 | 43 | ralrimdva | |- ( ( A e. V /\ B e. W ) -> ( x e. ~P ( A X. B ) -> A. y e. x E. z e. ~P A E. w e. ~P B ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) ) |
| 45 | eltx | |- ( ( ~P A e. Top /\ ~P B e. Top ) -> ( x e. ( ~P A tX ~P B ) <-> A. y e. x E. z e. ~P A E. w e. ~P B ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) ) |
|
| 46 | 1 2 45 | syl2an | |- ( ( A e. V /\ B e. W ) -> ( x e. ( ~P A tX ~P B ) <-> A. y e. x E. z e. ~P A E. w e. ~P B ( y e. ( z X. w ) /\ ( z X. w ) C_ x ) ) ) |
| 47 | 44 46 | sylibrd | |- ( ( A e. V /\ B e. W ) -> ( x e. ~P ( A X. B ) -> x e. ( ~P A tX ~P B ) ) ) |
| 48 | 47 | ssrdv | |- ( ( A e. V /\ B e. W ) -> ~P ( A X. B ) C_ ( ~P A tX ~P B ) ) |
| 49 | 12 48 | eqssd | |- ( ( A e. V /\ B e. W ) -> ( ~P A tX ~P B ) = ~P ( A X. B ) ) |