This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation of union with indexed union. (Contributed by Mario Carneiro, 18-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iuncom4 | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝐵 = ∪ ∪ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex | ⊢ ( ∃ 𝑧 ∈ 𝐵 𝑦 ∈ 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝑧 ) ) | |
| 2 | 1 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝑧 ) ) |
| 3 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝑧 ) ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝑧 ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑦 ∈ 𝑧 ↔ ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝑧 ) ) |
| 5 | r19.41v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝑧 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝑧 ) ) | |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑥 ∈ 𝐴 ( 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝑧 ) ↔ ∃ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝑧 ) ) |
| 7 | 4 6 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑦 ∈ 𝑧 ↔ ∃ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝑧 ) ) |
| 8 | eluni2 | ⊢ ( 𝑦 ∈ ∪ 𝐵 ↔ ∃ 𝑧 ∈ 𝐵 𝑦 ∈ 𝑧 ) | |
| 9 | 8 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ∪ 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑦 ∈ 𝑧 ) |
| 10 | df-rex | ⊢ ( ∃ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ∈ 𝑧 ↔ ∃ 𝑧 ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝑧 ) ) | |
| 11 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ) | |
| 12 | 11 | anbi1i | ⊢ ( ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝑧 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝑧 ) ) |
| 13 | 12 | exbii | ⊢ ( ∃ 𝑧 ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝑦 ∈ 𝑧 ) ↔ ∃ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝑧 ) ) |
| 14 | 10 13 | bitri | ⊢ ( ∃ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ∈ 𝑧 ↔ ∃ 𝑧 ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝑧 ) ) |
| 15 | 7 9 14 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ∪ 𝐵 ↔ ∃ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ∈ 𝑧 ) |
| 16 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∪ 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ∪ 𝐵 ) | |
| 17 | eluni2 | ⊢ ( 𝑦 ∈ ∪ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 𝑦 ∈ 𝑧 ) | |
| 18 | 15 16 17 | 3bitr4i | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ∪ 𝐵 ↔ 𝑦 ∈ ∪ ∪ 𝑥 ∈ 𝐴 𝐵 ) |
| 19 | 18 | eqriv | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝐵 = ∪ ∪ 𝑥 ∈ 𝐴 𝐵 |