This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological product of two second-countable spaces is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tx2ndc | |- ( ( R e. 2ndc /\ S e. 2ndc ) -> ( R tX S ) e. 2ndc ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | is2ndc | |- ( R e. 2ndc <-> E. r e. TopBases ( r ~<_ _om /\ ( topGen ` r ) = R ) ) |
|
| 2 | is2ndc | |- ( S e. 2ndc <-> E. s e. TopBases ( s ~<_ _om /\ ( topGen ` s ) = S ) ) |
|
| 3 | reeanv | |- ( E. r e. TopBases E. s e. TopBases ( ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ ( s ~<_ _om /\ ( topGen ` s ) = S ) ) <-> ( E. r e. TopBases ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ E. s e. TopBases ( s ~<_ _om /\ ( topGen ` s ) = S ) ) ) |
|
| 4 | an4 | |- ( ( ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ ( s ~<_ _om /\ ( topGen ` s ) = S ) ) <-> ( ( r ~<_ _om /\ s ~<_ _om ) /\ ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) ) ) |
|
| 5 | txbasval | |- ( ( r e. TopBases /\ s e. TopBases ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) = ( r tX s ) ) |
|
| 6 | eqid | |- ran ( x e. r , y e. s |-> ( x X. y ) ) = ran ( x e. r , y e. s |-> ( x X. y ) ) |
|
| 7 | 6 | txval | |- ( ( r e. TopBases /\ s e. TopBases ) -> ( r tX s ) = ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) ) |
| 8 | 5 7 | eqtrd | |- ( ( r e. TopBases /\ s e. TopBases ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) = ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) ) |
| 9 | 8 | adantr | |- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) = ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) ) |
| 10 | 6 | txbas | |- ( ( r e. TopBases /\ s e. TopBases ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) e. TopBases ) |
| 11 | 10 | adantr | |- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) e. TopBases ) |
| 12 | omelon | |- _om e. On |
|
| 13 | vex | |- s e. _V |
|
| 14 | 13 | xpdom1 | |- ( r ~<_ _om -> ( r X. s ) ~<_ ( _om X. s ) ) |
| 15 | omex | |- _om e. _V |
|
| 16 | 15 | xpdom2 | |- ( s ~<_ _om -> ( _om X. s ) ~<_ ( _om X. _om ) ) |
| 17 | domtr | |- ( ( ( r X. s ) ~<_ ( _om X. s ) /\ ( _om X. s ) ~<_ ( _om X. _om ) ) -> ( r X. s ) ~<_ ( _om X. _om ) ) |
|
| 18 | 14 16 17 | syl2an | |- ( ( r ~<_ _om /\ s ~<_ _om ) -> ( r X. s ) ~<_ ( _om X. _om ) ) |
| 19 | 18 | adantl | |- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( r X. s ) ~<_ ( _om X. _om ) ) |
| 20 | xpomen | |- ( _om X. _om ) ~~ _om |
|
| 21 | domentr | |- ( ( ( r X. s ) ~<_ ( _om X. _om ) /\ ( _om X. _om ) ~~ _om ) -> ( r X. s ) ~<_ _om ) |
|
| 22 | 19 20 21 | sylancl | |- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( r X. s ) ~<_ _om ) |
| 23 | ondomen | |- ( ( _om e. On /\ ( r X. s ) ~<_ _om ) -> ( r X. s ) e. dom card ) |
|
| 24 | 12 22 23 | sylancr | |- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( r X. s ) e. dom card ) |
| 25 | eqid | |- ( x e. r , y e. s |-> ( x X. y ) ) = ( x e. r , y e. s |-> ( x X. y ) ) |
|
| 26 | vex | |- x e. _V |
|
| 27 | vex | |- y e. _V |
|
| 28 | 26 27 | xpex | |- ( x X. y ) e. _V |
| 29 | 25 28 | fnmpoi | |- ( x e. r , y e. s |-> ( x X. y ) ) Fn ( r X. s ) |
| 30 | 29 | a1i | |- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( x e. r , y e. s |-> ( x X. y ) ) Fn ( r X. s ) ) |
| 31 | dffn4 | |- ( ( x e. r , y e. s |-> ( x X. y ) ) Fn ( r X. s ) <-> ( x e. r , y e. s |-> ( x X. y ) ) : ( r X. s ) -onto-> ran ( x e. r , y e. s |-> ( x X. y ) ) ) |
|
| 32 | 30 31 | sylib | |- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( x e. r , y e. s |-> ( x X. y ) ) : ( r X. s ) -onto-> ran ( x e. r , y e. s |-> ( x X. y ) ) ) |
| 33 | fodomnum | |- ( ( r X. s ) e. dom card -> ( ( x e. r , y e. s |-> ( x X. y ) ) : ( r X. s ) -onto-> ran ( x e. r , y e. s |-> ( x X. y ) ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ ( r X. s ) ) ) |
|
| 34 | 24 32 33 | sylc | |- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ ( r X. s ) ) |
| 35 | domtr | |- ( ( ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ ( r X. s ) /\ ( r X. s ) ~<_ _om ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ _om ) |
|
| 36 | 34 22 35 | syl2anc | |- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ _om ) |
| 37 | 2ndci | |- ( ( ran ( x e. r , y e. s |-> ( x X. y ) ) e. TopBases /\ ran ( x e. r , y e. s |-> ( x X. y ) ) ~<_ _om ) -> ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) e. 2ndc ) |
|
| 38 | 11 36 37 | syl2anc | |- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( topGen ` ran ( x e. r , y e. s |-> ( x X. y ) ) ) e. 2ndc ) |
| 39 | 9 38 | eqeltrd | |- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) e. 2ndc ) |
| 40 | oveq12 | |- ( ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) -> ( ( topGen ` r ) tX ( topGen ` s ) ) = ( R tX S ) ) |
|
| 41 | 40 | eleq1d | |- ( ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) -> ( ( ( topGen ` r ) tX ( topGen ` s ) ) e. 2ndc <-> ( R tX S ) e. 2ndc ) ) |
| 42 | 39 41 | syl5ibcom | |- ( ( ( r e. TopBases /\ s e. TopBases ) /\ ( r ~<_ _om /\ s ~<_ _om ) ) -> ( ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) -> ( R tX S ) e. 2ndc ) ) |
| 43 | 42 | expimpd | |- ( ( r e. TopBases /\ s e. TopBases ) -> ( ( ( r ~<_ _om /\ s ~<_ _om ) /\ ( ( topGen ` r ) = R /\ ( topGen ` s ) = S ) ) -> ( R tX S ) e. 2ndc ) ) |
| 44 | 4 43 | biimtrid | |- ( ( r e. TopBases /\ s e. TopBases ) -> ( ( ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ ( s ~<_ _om /\ ( topGen ` s ) = S ) ) -> ( R tX S ) e. 2ndc ) ) |
| 45 | 44 | rexlimivv | |- ( E. r e. TopBases E. s e. TopBases ( ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ ( s ~<_ _om /\ ( topGen ` s ) = S ) ) -> ( R tX S ) e. 2ndc ) |
| 46 | 3 45 | sylbir | |- ( ( E. r e. TopBases ( r ~<_ _om /\ ( topGen ` r ) = R ) /\ E. s e. TopBases ( s ~<_ _om /\ ( topGen ` s ) = S ) ) -> ( R tX S ) e. 2ndc ) |
| 47 | 1 2 46 | syl2anb | |- ( ( R e. 2ndc /\ S e. 2ndc ) -> ( R tX S ) e. 2ndc ) |