This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tx2cn | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 2nd |` ( X X. Y ) ) e. ( ( R tX S ) Cn S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f2ndres | |- ( 2nd |` ( X X. Y ) ) : ( X X. Y ) --> Y |
|
| 2 | 1 | a1i | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 2nd |` ( X X. Y ) ) : ( X X. Y ) --> Y ) |
| 3 | ffn | |- ( ( 2nd |` ( X X. Y ) ) : ( X X. Y ) --> Y -> ( 2nd |` ( X X. Y ) ) Fn ( X X. Y ) ) |
|
| 4 | elpreima | |- ( ( 2nd |` ( X X. Y ) ) Fn ( X X. Y ) -> ( z e. ( `' ( 2nd |` ( X X. Y ) ) " w ) <-> ( z e. ( X X. Y ) /\ ( ( 2nd |` ( X X. Y ) ) ` z ) e. w ) ) ) |
|
| 5 | 1 3 4 | mp2b | |- ( z e. ( `' ( 2nd |` ( X X. Y ) ) " w ) <-> ( z e. ( X X. Y ) /\ ( ( 2nd |` ( X X. Y ) ) ` z ) e. w ) ) |
| 6 | fvres | |- ( z e. ( X X. Y ) -> ( ( 2nd |` ( X X. Y ) ) ` z ) = ( 2nd ` z ) ) |
|
| 7 | 6 | eleq1d | |- ( z e. ( X X. Y ) -> ( ( ( 2nd |` ( X X. Y ) ) ` z ) e. w <-> ( 2nd ` z ) e. w ) ) |
| 8 | 1st2nd2 | |- ( z e. ( X X. Y ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
|
| 9 | xp1st | |- ( z e. ( X X. Y ) -> ( 1st ` z ) e. X ) |
|
| 10 | elxp6 | |- ( z e. ( X X. w ) <-> ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( ( 1st ` z ) e. X /\ ( 2nd ` z ) e. w ) ) ) |
|
| 11 | anass | |- ( ( ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( 1st ` z ) e. X ) /\ ( 2nd ` z ) e. w ) <-> ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( ( 1st ` z ) e. X /\ ( 2nd ` z ) e. w ) ) ) |
|
| 12 | 10 11 | bitr4i | |- ( z e. ( X X. w ) <-> ( ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( 1st ` z ) e. X ) /\ ( 2nd ` z ) e. w ) ) |
| 13 | 12 | baib | |- ( ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( 1st ` z ) e. X ) -> ( z e. ( X X. w ) <-> ( 2nd ` z ) e. w ) ) |
| 14 | 8 9 13 | syl2anc | |- ( z e. ( X X. Y ) -> ( z e. ( X X. w ) <-> ( 2nd ` z ) e. w ) ) |
| 15 | 7 14 | bitr4d | |- ( z e. ( X X. Y ) -> ( ( ( 2nd |` ( X X. Y ) ) ` z ) e. w <-> z e. ( X X. w ) ) ) |
| 16 | 15 | pm5.32i | |- ( ( z e. ( X X. Y ) /\ ( ( 2nd |` ( X X. Y ) ) ` z ) e. w ) <-> ( z e. ( X X. Y ) /\ z e. ( X X. w ) ) ) |
| 17 | 5 16 | bitri | |- ( z e. ( `' ( 2nd |` ( X X. Y ) ) " w ) <-> ( z e. ( X X. Y ) /\ z e. ( X X. w ) ) ) |
| 18 | toponss | |- ( ( S e. ( TopOn ` Y ) /\ w e. S ) -> w C_ Y ) |
|
| 19 | 18 | adantll | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. S ) -> w C_ Y ) |
| 20 | xpss2 | |- ( w C_ Y -> ( X X. w ) C_ ( X X. Y ) ) |
|
| 21 | 19 20 | syl | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. S ) -> ( X X. w ) C_ ( X X. Y ) ) |
| 22 | 21 | sseld | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. S ) -> ( z e. ( X X. w ) -> z e. ( X X. Y ) ) ) |
| 23 | 22 | pm4.71rd | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. S ) -> ( z e. ( X X. w ) <-> ( z e. ( X X. Y ) /\ z e. ( X X. w ) ) ) ) |
| 24 | 17 23 | bitr4id | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. S ) -> ( z e. ( `' ( 2nd |` ( X X. Y ) ) " w ) <-> z e. ( X X. w ) ) ) |
| 25 | 24 | eqrdv | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. S ) -> ( `' ( 2nd |` ( X X. Y ) ) " w ) = ( X X. w ) ) |
| 26 | toponmax | |- ( R e. ( TopOn ` X ) -> X e. R ) |
|
| 27 | txopn | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ ( X e. R /\ w e. S ) ) -> ( X X. w ) e. ( R tX S ) ) |
|
| 28 | 27 | expr | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ X e. R ) -> ( w e. S -> ( X X. w ) e. ( R tX S ) ) ) |
| 29 | 26 28 | mpidan | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( w e. S -> ( X X. w ) e. ( R tX S ) ) ) |
| 30 | 29 | imp | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. S ) -> ( X X. w ) e. ( R tX S ) ) |
| 31 | 25 30 | eqeltrd | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. S ) -> ( `' ( 2nd |` ( X X. Y ) ) " w ) e. ( R tX S ) ) |
| 32 | 31 | ralrimiva | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> A. w e. S ( `' ( 2nd |` ( X X. Y ) ) " w ) e. ( R tX S ) ) |
| 33 | txtopon | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( R tX S ) e. ( TopOn ` ( X X. Y ) ) ) |
|
| 34 | iscn | |- ( ( ( R tX S ) e. ( TopOn ` ( X X. Y ) ) /\ S e. ( TopOn ` Y ) ) -> ( ( 2nd |` ( X X. Y ) ) e. ( ( R tX S ) Cn S ) <-> ( ( 2nd |` ( X X. Y ) ) : ( X X. Y ) --> Y /\ A. w e. S ( `' ( 2nd |` ( X X. Y ) ) " w ) e. ( R tX S ) ) ) ) |
|
| 35 | 33 34 | sylancom | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( ( 2nd |` ( X X. Y ) ) e. ( ( R tX S ) Cn S ) <-> ( ( 2nd |` ( X X. Y ) ) : ( X X. Y ) --> Y /\ A. w e. S ( `' ( 2nd |` ( X X. Y ) ) " w ) e. ( R tX S ) ) ) ) |
| 36 | 2 32 35 | mpbir2and | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 2nd |` ( X X. Y ) ) e. ( ( R tX S ) Cn S ) ) |