This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tusbas , tusunif , and tustopn . (Contributed by Thierry Arnoux, 5-Dec-2017) (Proof shortened by AV, 28-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tuslem.k | ⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) | |
| Assertion | tuslem | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝑈 = ( UnifSet ‘ 𝐾 ) ∧ ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tuslem.k | ⊢ 𝐾 = ( toUnifSp ‘ 𝑈 ) | |
| 2 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 3 | tsetndxnbasendx | ⊢ ( TopSet ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 4 | 3 | necomi | ⊢ ( Base ‘ ndx ) ≠ ( TopSet ‘ ndx ) |
| 5 | 2 4 | setsnid | ⊢ ( Base ‘ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ) = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) |
| 6 | ustbas2 | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = dom ∪ 𝑈 ) | |
| 7 | uniexg | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ 𝑈 ∈ V ) | |
| 8 | dmexg | ⊢ ( ∪ 𝑈 ∈ V → dom ∪ 𝑈 ∈ V ) | |
| 9 | eqid | ⊢ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } = { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } | |
| 10 | basendxltunifndx | ⊢ ( Base ‘ ndx ) < ( UnifSet ‘ ndx ) | |
| 11 | unifndxnn | ⊢ ( UnifSet ‘ ndx ) ∈ ℕ | |
| 12 | 9 10 11 | 2strbas | ⊢ ( dom ∪ 𝑈 ∈ V → dom ∪ 𝑈 = ( Base ‘ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ) ) |
| 13 | 7 8 12 | 3syl | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → dom ∪ 𝑈 = ( Base ‘ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ) ) |
| 14 | 6 13 | eqtrd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ) ) |
| 15 | tusval | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( toUnifSp ‘ 𝑈 ) = ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) | |
| 16 | 1 15 | eqtrid | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝐾 = ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) |
| 17 | 16 | fveq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( Base ‘ 𝐾 ) = ( Base ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) ) |
| 18 | 5 14 17 | 3eqtr4a | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ( Base ‘ 𝐾 ) ) |
| 19 | unifid | ⊢ UnifSet = Slot ( UnifSet ‘ ndx ) | |
| 20 | unifndxntsetndx | ⊢ ( UnifSet ‘ ndx ) ≠ ( TopSet ‘ ndx ) | |
| 21 | 19 20 | setsnid | ⊢ ( UnifSet ‘ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ) = ( UnifSet ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) |
| 22 | 9 10 11 19 | 2strop | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSet ‘ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ) ) |
| 23 | 16 | fveq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( UnifSet ‘ 𝐾 ) = ( UnifSet ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) ) |
| 24 | 21 22 23 | 3eqtr4a | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 = ( UnifSet ‘ 𝐾 ) ) |
| 25 | prex | ⊢ { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ∈ V | |
| 26 | fvex | ⊢ ( unifTop ‘ 𝑈 ) ∈ V | |
| 27 | tsetid | ⊢ TopSet = Slot ( TopSet ‘ ndx ) | |
| 28 | 27 | setsid | ⊢ ( ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ∈ V ∧ ( unifTop ‘ 𝑈 ) ∈ V ) → ( unifTop ‘ 𝑈 ) = ( TopSet ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) ) |
| 29 | 25 26 28 | mp2an | ⊢ ( unifTop ‘ 𝑈 ) = ( TopSet ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) |
| 30 | 16 | fveq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopSet ‘ 𝐾 ) = ( TopSet ‘ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) ) |
| 31 | 29 30 | eqtr4id | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopSet ‘ 𝐾 ) ) |
| 32 | utopbas | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑋 = ∪ ( unifTop ‘ 𝑈 ) ) | |
| 33 | 31 | unieqd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ ( unifTop ‘ 𝑈 ) = ∪ ( TopSet ‘ 𝐾 ) ) |
| 34 | 32 18 33 | 3eqtr3rd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ ( TopSet ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) |
| 35 | 34 | oveq2d | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( ( TopSet ‘ 𝐾 ) ↾t ∪ ( TopSet ‘ 𝐾 ) ) = ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) ) |
| 36 | fvex | ⊢ ( TopSet ‘ 𝐾 ) ∈ V | |
| 37 | eqid | ⊢ ∪ ( TopSet ‘ 𝐾 ) = ∪ ( TopSet ‘ 𝐾 ) | |
| 38 | 37 | restid | ⊢ ( ( TopSet ‘ 𝐾 ) ∈ V → ( ( TopSet ‘ 𝐾 ) ↾t ∪ ( TopSet ‘ 𝐾 ) ) = ( TopSet ‘ 𝐾 ) ) |
| 39 | 36 38 | ax-mp | ⊢ ( ( TopSet ‘ 𝐾 ) ↾t ∪ ( TopSet ‘ 𝐾 ) ) = ( TopSet ‘ 𝐾 ) |
| 40 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 41 | eqid | ⊢ ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐾 ) | |
| 42 | 40 41 | topnval | ⊢ ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) = ( TopOpen ‘ 𝐾 ) |
| 43 | 35 39 42 | 3eqtr3g | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( TopSet ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) ) |
| 44 | 31 43 | eqtrd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) |
| 45 | 18 24 44 | 3jca | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 = ( Base ‘ 𝐾 ) ∧ 𝑈 = ( UnifSet ‘ 𝐾 ) ∧ ( unifTop ‘ 𝑈 ) = ( TopOpen ‘ 𝐾 ) ) ) |