This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the uniform space mapping function. (Contributed by Thierry Arnoux, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tusval | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( toUnifSp ‘ 𝑈 ) = ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tus | ⊢ toUnifSp = ( 𝑢 ∈ ∪ ran UnifOn ↦ ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑢 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑢 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑢 ) 〉 ) ) | |
| 2 | simpr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 𝑢 = 𝑈 ) | |
| 3 | 2 | unieqd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → ∪ 𝑢 = ∪ 𝑈 ) |
| 4 | 3 | dmeqd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → dom ∪ 𝑢 = dom ∪ 𝑈 ) |
| 5 | 4 | opeq2d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 〈 ( Base ‘ ndx ) , dom ∪ 𝑢 〉 = 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 ) |
| 6 | 2 | opeq2d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 〈 ( UnifSet ‘ ndx ) , 𝑢 〉 = 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 ) |
| 7 | 5 6 | preq12d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → { 〈 ( Base ‘ ndx ) , dom ∪ 𝑢 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑢 〉 } = { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } ) |
| 8 | 2 | fveq2d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → ( unifTop ‘ 𝑢 ) = ( unifTop ‘ 𝑈 ) ) |
| 9 | 8 | opeq2d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑢 ) 〉 = 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) |
| 10 | 7 9 | oveq12d | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 = 𝑈 ) → ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑢 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑢 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑢 ) 〉 ) = ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) |
| 11 | elfvunirn | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ∈ ∪ ran UnifOn ) | |
| 12 | ovexd | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ∈ V ) | |
| 13 | 1 10 11 12 | fvmptd2 | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( toUnifSp ‘ 𝑈 ) = ( { 〈 ( Base ‘ ndx ) , dom ∪ 𝑈 〉 , 〈 ( UnifSet ‘ ndx ) , 𝑈 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( unifTop ‘ 𝑈 ) 〉 ) ) |