This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tusbas , tusunif , and tustopn . (Contributed by Thierry Arnoux, 5-Dec-2017) (Proof shortened by AV, 28-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tuslem.k | |- K = ( toUnifSp ` U ) |
|
| Assertion | tuslem | |- ( U e. ( UnifOn ` X ) -> ( X = ( Base ` K ) /\ U = ( UnifSet ` K ) /\ ( unifTop ` U ) = ( TopOpen ` K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tuslem.k | |- K = ( toUnifSp ` U ) |
|
| 2 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 3 | tsetndxnbasendx | |- ( TopSet ` ndx ) =/= ( Base ` ndx ) |
|
| 4 | 3 | necomi | |- ( Base ` ndx ) =/= ( TopSet ` ndx ) |
| 5 | 2 4 | setsnid | |- ( Base ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) = ( Base ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
| 6 | ustbas2 | |- ( U e. ( UnifOn ` X ) -> X = dom U. U ) |
|
| 7 | uniexg | |- ( U e. ( UnifOn ` X ) -> U. U e. _V ) |
|
| 8 | dmexg | |- ( U. U e. _V -> dom U. U e. _V ) |
|
| 9 | eqid | |- { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } = { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } |
|
| 10 | basendxltunifndx | |- ( Base ` ndx ) < ( UnifSet ` ndx ) |
|
| 11 | unifndxnn | |- ( UnifSet ` ndx ) e. NN |
|
| 12 | 9 10 11 | 2strbas | |- ( dom U. U e. _V -> dom U. U = ( Base ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) ) |
| 13 | 7 8 12 | 3syl | |- ( U e. ( UnifOn ` X ) -> dom U. U = ( Base ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) ) |
| 14 | 6 13 | eqtrd | |- ( U e. ( UnifOn ` X ) -> X = ( Base ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) ) |
| 15 | tusval | |- ( U e. ( UnifOn ` X ) -> ( toUnifSp ` U ) = ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
|
| 16 | 1 15 | eqtrid | |- ( U e. ( UnifOn ` X ) -> K = ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
| 17 | 16 | fveq2d | |- ( U e. ( UnifOn ` X ) -> ( Base ` K ) = ( Base ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) ) |
| 18 | 5 14 17 | 3eqtr4a | |- ( U e. ( UnifOn ` X ) -> X = ( Base ` K ) ) |
| 19 | unifid | |- UnifSet = Slot ( UnifSet ` ndx ) |
|
| 20 | unifndxntsetndx | |- ( UnifSet ` ndx ) =/= ( TopSet ` ndx ) |
|
| 21 | 19 20 | setsnid | |- ( UnifSet ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) = ( UnifSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
| 22 | 9 10 11 19 | 2strop | |- ( U e. ( UnifOn ` X ) -> U = ( UnifSet ` { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } ) ) |
| 23 | 16 | fveq2d | |- ( U e. ( UnifOn ` X ) -> ( UnifSet ` K ) = ( UnifSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) ) |
| 24 | 21 22 23 | 3eqtr4a | |- ( U e. ( UnifOn ` X ) -> U = ( UnifSet ` K ) ) |
| 25 | prex | |- { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } e. _V |
|
| 26 | fvex | |- ( unifTop ` U ) e. _V |
|
| 27 | tsetid | |- TopSet = Slot ( TopSet ` ndx ) |
|
| 28 | 27 | setsid | |- ( ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } e. _V /\ ( unifTop ` U ) e. _V ) -> ( unifTop ` U ) = ( TopSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) ) |
| 29 | 25 26 28 | mp2an | |- ( unifTop ` U ) = ( TopSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) |
| 30 | 16 | fveq2d | |- ( U e. ( UnifOn ` X ) -> ( TopSet ` K ) = ( TopSet ` ( { <. ( Base ` ndx ) , dom U. U >. , <. ( UnifSet ` ndx ) , U >. } sSet <. ( TopSet ` ndx ) , ( unifTop ` U ) >. ) ) ) |
| 31 | 29 30 | eqtr4id | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = ( TopSet ` K ) ) |
| 32 | utopbas | |- ( U e. ( UnifOn ` X ) -> X = U. ( unifTop ` U ) ) |
|
| 33 | 31 | unieqd | |- ( U e. ( UnifOn ` X ) -> U. ( unifTop ` U ) = U. ( TopSet ` K ) ) |
| 34 | 32 18 33 | 3eqtr3rd | |- ( U e. ( UnifOn ` X ) -> U. ( TopSet ` K ) = ( Base ` K ) ) |
| 35 | 34 | oveq2d | |- ( U e. ( UnifOn ` X ) -> ( ( TopSet ` K ) |`t U. ( TopSet ` K ) ) = ( ( TopSet ` K ) |`t ( Base ` K ) ) ) |
| 36 | fvex | |- ( TopSet ` K ) e. _V |
|
| 37 | eqid | |- U. ( TopSet ` K ) = U. ( TopSet ` K ) |
|
| 38 | 37 | restid | |- ( ( TopSet ` K ) e. _V -> ( ( TopSet ` K ) |`t U. ( TopSet ` K ) ) = ( TopSet ` K ) ) |
| 39 | 36 38 | ax-mp | |- ( ( TopSet ` K ) |`t U. ( TopSet ` K ) ) = ( TopSet ` K ) |
| 40 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 41 | eqid | |- ( TopSet ` K ) = ( TopSet ` K ) |
|
| 42 | 40 41 | topnval | |- ( ( TopSet ` K ) |`t ( Base ` K ) ) = ( TopOpen ` K ) |
| 43 | 35 39 42 | 3eqtr3g | |- ( U e. ( UnifOn ` X ) -> ( TopSet ` K ) = ( TopOpen ` K ) ) |
| 44 | 31 43 | eqtrd | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = ( TopOpen ` K ) ) |
| 45 | 18 24 44 | 3jca | |- ( U e. ( UnifOn ` X ) -> ( X = ( Base ` K ) /\ U = ( UnifSet ` K ) /\ ( unifTop ` U ) = ( TopOpen ` K ) ) ) |