This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | topnval.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| topnval.2 | ⊢ 𝐽 = ( TopSet ‘ 𝑊 ) | ||
| Assertion | topnval | ⊢ ( 𝐽 ↾t 𝐵 ) = ( TopOpen ‘ 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topnval.1 | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | topnval.2 | ⊢ 𝐽 = ( TopSet ‘ 𝑊 ) | |
| 3 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( TopSet ‘ 𝑤 ) = ( TopSet ‘ 𝑊 ) ) | |
| 4 | 3 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( TopSet ‘ 𝑤 ) = 𝐽 ) |
| 5 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝐵 ) |
| 7 | 4 6 | oveq12d | ⊢ ( 𝑤 = 𝑊 → ( ( TopSet ‘ 𝑤 ) ↾t ( Base ‘ 𝑤 ) ) = ( 𝐽 ↾t 𝐵 ) ) |
| 8 | df-topn | ⊢ TopOpen = ( 𝑤 ∈ V ↦ ( ( TopSet ‘ 𝑤 ) ↾t ( Base ‘ 𝑤 ) ) ) | |
| 9 | ovex | ⊢ ( 𝐽 ↾t 𝐵 ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝑊 ∈ V → ( TopOpen ‘ 𝑊 ) = ( 𝐽 ↾t 𝐵 ) ) |
| 11 | 10 | eqcomd | ⊢ ( 𝑊 ∈ V → ( 𝐽 ↾t 𝐵 ) = ( TopOpen ‘ 𝑊 ) ) |
| 12 | 0rest | ⊢ ( ∅ ↾t 𝐵 ) = ∅ | |
| 13 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( TopSet ‘ 𝑊 ) = ∅ ) | |
| 14 | 2 13 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝐽 = ∅ ) |
| 15 | 14 | oveq1d | ⊢ ( ¬ 𝑊 ∈ V → ( 𝐽 ↾t 𝐵 ) = ( ∅ ↾t 𝐵 ) ) |
| 16 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( TopOpen ‘ 𝑊 ) = ∅ ) | |
| 17 | 12 15 16 | 3eqtr4a | ⊢ ( ¬ 𝑊 ∈ V → ( 𝐽 ↾t 𝐵 ) = ( TopOpen ‘ 𝑊 ) ) |
| 18 | 11 17 | pm2.61i | ⊢ ( 𝐽 ↾t 𝐵 ) = ( TopOpen ‘ 𝑊 ) |