This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for trlsegvdeg . (Contributed by AV, 21-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | trlsegvdeg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| trlsegvdeg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| trlsegvdeg.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| trlsegvdeg.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | ||
| trlsegvdeg.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| trlsegvdeg.w | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | ||
| trlsegvdeg.vx | ⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) | ||
| trlsegvdeg.vy | ⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) | ||
| trlsegvdeg.vz | ⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) | ||
| trlsegvdeg.ix | ⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | ||
| trlsegvdeg.iy | ⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) | ||
| trlsegvdeg.iz | ⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) | ||
| Assertion | trlsegvdeglem6 | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑋 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | trlsegvdeg.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | trlsegvdeg.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | trlsegvdeg.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 5 | trlsegvdeg.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 6 | trlsegvdeg.w | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) | |
| 7 | trlsegvdeg.vx | ⊢ ( 𝜑 → ( Vtx ‘ 𝑋 ) = 𝑉 ) | |
| 8 | trlsegvdeg.vy | ⊢ ( 𝜑 → ( Vtx ‘ 𝑌 ) = 𝑉 ) | |
| 9 | trlsegvdeg.vz | ⊢ ( 𝜑 → ( Vtx ‘ 𝑍 ) = 𝑉 ) | |
| 10 | trlsegvdeg.ix | ⊢ ( 𝜑 → ( iEdg ‘ 𝑋 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ) | |
| 11 | trlsegvdeg.iy | ⊢ ( 𝜑 → ( iEdg ‘ 𝑌 ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) | |
| 12 | trlsegvdeg.iz | ⊢ ( 𝜑 → ( iEdg ‘ 𝑍 ) = ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) ) | |
| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | trlsegvdeglem4 | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑋 ) = ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ) |
| 14 | 2 | trlf1 | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 ) |
| 15 | f1fun | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ dom 𝐼 → Fun 𝐹 ) | |
| 16 | 6 14 15 | 3syl | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 17 | fzofi | ⊢ ( 0 ..^ 𝑁 ) ∈ Fin | |
| 18 | imafi | ⊢ ( ( Fun 𝐹 ∧ ( 0 ..^ 𝑁 ) ∈ Fin ) → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∈ Fin ) | |
| 19 | 16 17 18 | sylancl | ⊢ ( 𝜑 → ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∈ Fin ) |
| 20 | infi | ⊢ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∈ Fin → ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ∈ Fin ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∩ dom 𝐼 ) ∈ Fin ) |
| 22 | 13 21 | eqeltrd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑋 ) ∈ Fin ) |