This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: TODO-AV: Revise using F e. Word dom I ? Formerly part of proof of eupth2lem3 : The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 20-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resunimafz0.i | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| resunimafz0.f | ⊢ ( 𝜑 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | ||
| resunimafz0.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | ||
| Assertion | resunimafz0 | ⊢ ( 𝜑 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resunimafz0.i | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 2 | resunimafz0.f | ⊢ ( 𝜑 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 3 | resunimafz0.n | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 4 | imaundi | ⊢ ( 𝐹 “ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) = ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∪ ( 𝐹 “ { 𝑁 } ) ) | |
| 5 | elfzonn0 | ⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → 𝑁 ∈ ℕ0 ) | |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 7 | elnn0uz | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 8 | 6 7 | sylib | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 9 | fzisfzounsn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 𝑁 ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
| 11 | 10 | imaeq2d | ⊢ ( 𝜑 → ( 𝐹 “ ( 0 ... 𝑁 ) ) = ( 𝐹 “ ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) ) |
| 12 | 2 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 13 | fnsnfv | ⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → { ( 𝐹 ‘ 𝑁 ) } = ( 𝐹 “ { 𝑁 } ) ) | |
| 14 | 12 3 13 | syl2anc | ⊢ ( 𝜑 → { ( 𝐹 ‘ 𝑁 ) } = ( 𝐹 “ { 𝑁 } ) ) |
| 15 | 14 | uneq2d | ⊢ ( 𝜑 → ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∪ { ( 𝐹 ‘ 𝑁 ) } ) = ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∪ ( 𝐹 “ { 𝑁 } ) ) ) |
| 16 | 4 11 15 | 3eqtr4a | ⊢ ( 𝜑 → ( 𝐹 “ ( 0 ... 𝑁 ) ) = ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∪ { ( 𝐹 ‘ 𝑁 ) } ) ) |
| 17 | 16 | reseq2d | ⊢ ( 𝜑 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) = ( 𝐼 ↾ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∪ { ( 𝐹 ‘ 𝑁 ) } ) ) ) |
| 18 | resundi | ⊢ ( 𝐼 ↾ ( ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ∪ { ( 𝐹 ‘ 𝑁 ) } ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ ( 𝐼 ↾ { ( 𝐹 ‘ 𝑁 ) } ) ) | |
| 19 | 17 18 | eqtrdi | ⊢ ( 𝜑 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ ( 𝐼 ↾ { ( 𝐹 ‘ 𝑁 ) } ) ) ) |
| 20 | 1 | funfnd | ⊢ ( 𝜑 → 𝐼 Fn dom 𝐼 ) |
| 21 | 2 3 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) |
| 22 | fnressn | ⊢ ( ( 𝐼 Fn dom 𝐼 ∧ ( 𝐹 ‘ 𝑁 ) ∈ dom 𝐼 ) → ( 𝐼 ↾ { ( 𝐹 ‘ 𝑁 ) } ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) | |
| 23 | 20 21 22 | syl2anc | ⊢ ( 𝜑 → ( 𝐼 ↾ { ( 𝐹 ‘ 𝑁 ) } ) = { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) |
| 24 | 23 | uneq2d | ⊢ ( 𝜑 → ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ ( 𝐼 ↾ { ( 𝐹 ‘ 𝑁 ) } ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) ) |
| 25 | 19 24 | eqtrd | ⊢ ( 𝜑 → ( 𝐼 ↾ ( 𝐹 “ ( 0 ... 𝑁 ) ) ) = ( ( 𝐼 ↾ ( 𝐹 “ ( 0 ..^ 𝑁 ) ) ) ∪ { 〈 ( 𝐹 ‘ 𝑁 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑁 ) ) 〉 } ) ) |