This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topology is a distributive lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | topdlat.i | ⊢ 𝐼 = ( toInc ‘ 𝐽 ) | |
| Assertion | topdlat | ⊢ ( 𝐽 ∈ Top → 𝐼 ∈ DLat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topdlat.i | ⊢ 𝐼 = ( toInc ‘ 𝐽 ) | |
| 2 | 1 | topclat | ⊢ ( 𝐽 ∈ Top → 𝐼 ∈ CLat ) |
| 3 | clatl | ⊢ ( 𝐼 ∈ CLat → 𝐼 ∈ Lat ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐽 ∈ Top → 𝐼 ∈ Lat ) |
| 5 | simpl | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝐽 ∈ Top ) | |
| 6 | simpr2 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐼 ) ) | |
| 7 | 1 | ipobas | ⊢ ( 𝐽 ∈ Top → 𝐽 = ( Base ‘ 𝐼 ) ) |
| 8 | 5 7 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝐽 = ( Base ‘ 𝐼 ) ) |
| 9 | 6 8 | eleqtrrd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑦 ∈ 𝐽 ) |
| 10 | simpr3 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐼 ) ) | |
| 11 | 10 8 | eleqtrrd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑧 ∈ 𝐽 ) |
| 12 | eqid | ⊢ ( join ‘ 𝐼 ) = ( join ‘ 𝐼 ) | |
| 13 | 1 5 9 11 12 | toplatjoin | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑦 ( join ‘ 𝐼 ) 𝑧 ) = ( 𝑦 ∪ 𝑧 ) ) |
| 14 | 13 | oveq2d | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ( meet ‘ 𝐼 ) ( 𝑦 ( join ‘ 𝐼 ) 𝑧 ) ) = ( 𝑥 ( meet ‘ 𝐼 ) ( 𝑦 ∪ 𝑧 ) ) ) |
| 15 | simpr1 | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐼 ) ) | |
| 16 | 15 8 | eleqtrrd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → 𝑥 ∈ 𝐽 ) |
| 17 | unopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽 ∧ 𝑧 ∈ 𝐽 ) → ( 𝑦 ∪ 𝑧 ) ∈ 𝐽 ) | |
| 18 | 5 9 11 17 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑦 ∪ 𝑧 ) ∈ 𝐽 ) |
| 19 | eqid | ⊢ ( meet ‘ 𝐼 ) = ( meet ‘ 𝐼 ) | |
| 20 | 1 5 16 18 19 | toplatmeet | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ( meet ‘ 𝐼 ) ( 𝑦 ∪ 𝑧 ) ) = ( 𝑥 ∩ ( 𝑦 ∪ 𝑧 ) ) ) |
| 21 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) | |
| 22 | 5 16 9 21 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) |
| 23 | inopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽 ∧ 𝑧 ∈ 𝐽 ) → ( 𝑥 ∩ 𝑧 ) ∈ 𝐽 ) | |
| 24 | 5 16 11 23 | syl3anc | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ∩ 𝑧 ) ∈ 𝐽 ) |
| 25 | 1 5 22 24 12 | toplatjoin | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑥 ∩ 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ∩ 𝑧 ) ) = ( ( 𝑥 ∩ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) ) |
| 26 | 1 5 16 9 19 | toplatmeet | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ( meet ‘ 𝐼 ) 𝑦 ) = ( 𝑥 ∩ 𝑦 ) ) |
| 27 | 1 5 16 11 19 | toplatmeet | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ( meet ‘ 𝐼 ) 𝑧 ) = ( 𝑥 ∩ 𝑧 ) ) |
| 28 | 26 27 | oveq12d | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( ( 𝑥 ( meet ‘ 𝐼 ) 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) 𝑧 ) ) = ( ( 𝑥 ∩ 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ∩ 𝑧 ) ) ) |
| 29 | indi | ⊢ ( 𝑥 ∩ ( 𝑦 ∪ 𝑧 ) ) = ( ( 𝑥 ∩ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) | |
| 30 | 29 | a1i | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ∩ ( 𝑦 ∪ 𝑧 ) ) = ( ( 𝑥 ∩ 𝑦 ) ∪ ( 𝑥 ∩ 𝑧 ) ) ) |
| 31 | 25 28 30 | 3eqtr4rd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ∩ ( 𝑦 ∪ 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐼 ) 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) 𝑧 ) ) ) |
| 32 | 14 20 31 | 3eqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ ( Base ‘ 𝐼 ) ∧ 𝑦 ∈ ( Base ‘ 𝐼 ) ∧ 𝑧 ∈ ( Base ‘ 𝐼 ) ) ) → ( 𝑥 ( meet ‘ 𝐼 ) ( 𝑦 ( join ‘ 𝐼 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐼 ) 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) 𝑧 ) ) ) |
| 33 | 32 | ralrimivvva | ⊢ ( 𝐽 ∈ Top → ∀ 𝑥 ∈ ( Base ‘ 𝐼 ) ∀ 𝑦 ∈ ( Base ‘ 𝐼 ) ∀ 𝑧 ∈ ( Base ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) ( 𝑦 ( join ‘ 𝐼 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐼 ) 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) 𝑧 ) ) ) |
| 34 | eqid | ⊢ ( Base ‘ 𝐼 ) = ( Base ‘ 𝐼 ) | |
| 35 | 34 12 19 | isdlat | ⊢ ( 𝐼 ∈ DLat ↔ ( 𝐼 ∈ Lat ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐼 ) ∀ 𝑦 ∈ ( Base ‘ 𝐼 ) ∀ 𝑧 ∈ ( Base ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) ( 𝑦 ( join ‘ 𝐼 ) 𝑧 ) ) = ( ( 𝑥 ( meet ‘ 𝐼 ) 𝑦 ) ( join ‘ 𝐼 ) ( 𝑥 ( meet ‘ 𝐼 ) 𝑧 ) ) ) ) |
| 36 | 4 33 35 | sylanbrc | ⊢ ( 𝐽 ∈ Top → 𝐼 ∈ DLat ) |