This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topology is a distributive lattice under inclusion. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | topdlat.i | |- I = ( toInc ` J ) |
|
| Assertion | topdlat | |- ( J e. Top -> I e. DLat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topdlat.i | |- I = ( toInc ` J ) |
|
| 2 | 1 | topclat | |- ( J e. Top -> I e. CLat ) |
| 3 | clatl | |- ( I e. CLat -> I e. Lat ) |
|
| 4 | 2 3 | syl | |- ( J e. Top -> I e. Lat ) |
| 5 | simpl | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> J e. Top ) |
|
| 6 | simpr2 | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> y e. ( Base ` I ) ) |
|
| 7 | 1 | ipobas | |- ( J e. Top -> J = ( Base ` I ) ) |
| 8 | 5 7 | syl | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> J = ( Base ` I ) ) |
| 9 | 6 8 | eleqtrrd | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> y e. J ) |
| 10 | simpr3 | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> z e. ( Base ` I ) ) |
|
| 11 | 10 8 | eleqtrrd | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> z e. J ) |
| 12 | eqid | |- ( join ` I ) = ( join ` I ) |
|
| 13 | 1 5 9 11 12 | toplatjoin | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> ( y ( join ` I ) z ) = ( y u. z ) ) |
| 14 | 13 | oveq2d | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> ( x ( meet ` I ) ( y ( join ` I ) z ) ) = ( x ( meet ` I ) ( y u. z ) ) ) |
| 15 | simpr1 | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> x e. ( Base ` I ) ) |
|
| 16 | 15 8 | eleqtrrd | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> x e. J ) |
| 17 | unopn | |- ( ( J e. Top /\ y e. J /\ z e. J ) -> ( y u. z ) e. J ) |
|
| 18 | 5 9 11 17 | syl3anc | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> ( y u. z ) e. J ) |
| 19 | eqid | |- ( meet ` I ) = ( meet ` I ) |
|
| 20 | 1 5 16 18 19 | toplatmeet | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> ( x ( meet ` I ) ( y u. z ) ) = ( x i^i ( y u. z ) ) ) |
| 21 | inopn | |- ( ( J e. Top /\ x e. J /\ y e. J ) -> ( x i^i y ) e. J ) |
|
| 22 | 5 16 9 21 | syl3anc | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> ( x i^i y ) e. J ) |
| 23 | inopn | |- ( ( J e. Top /\ x e. J /\ z e. J ) -> ( x i^i z ) e. J ) |
|
| 24 | 5 16 11 23 | syl3anc | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> ( x i^i z ) e. J ) |
| 25 | 1 5 22 24 12 | toplatjoin | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> ( ( x i^i y ) ( join ` I ) ( x i^i z ) ) = ( ( x i^i y ) u. ( x i^i z ) ) ) |
| 26 | 1 5 16 9 19 | toplatmeet | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> ( x ( meet ` I ) y ) = ( x i^i y ) ) |
| 27 | 1 5 16 11 19 | toplatmeet | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> ( x ( meet ` I ) z ) = ( x i^i z ) ) |
| 28 | 26 27 | oveq12d | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> ( ( x ( meet ` I ) y ) ( join ` I ) ( x ( meet ` I ) z ) ) = ( ( x i^i y ) ( join ` I ) ( x i^i z ) ) ) |
| 29 | indi | |- ( x i^i ( y u. z ) ) = ( ( x i^i y ) u. ( x i^i z ) ) |
|
| 30 | 29 | a1i | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> ( x i^i ( y u. z ) ) = ( ( x i^i y ) u. ( x i^i z ) ) ) |
| 31 | 25 28 30 | 3eqtr4rd | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> ( x i^i ( y u. z ) ) = ( ( x ( meet ` I ) y ) ( join ` I ) ( x ( meet ` I ) z ) ) ) |
| 32 | 14 20 31 | 3eqtrd | |- ( ( J e. Top /\ ( x e. ( Base ` I ) /\ y e. ( Base ` I ) /\ z e. ( Base ` I ) ) ) -> ( x ( meet ` I ) ( y ( join ` I ) z ) ) = ( ( x ( meet ` I ) y ) ( join ` I ) ( x ( meet ` I ) z ) ) ) |
| 33 | 32 | ralrimivvva | |- ( J e. Top -> A. x e. ( Base ` I ) A. y e. ( Base ` I ) A. z e. ( Base ` I ) ( x ( meet ` I ) ( y ( join ` I ) z ) ) = ( ( x ( meet ` I ) y ) ( join ` I ) ( x ( meet ` I ) z ) ) ) |
| 34 | eqid | |- ( Base ` I ) = ( Base ` I ) |
|
| 35 | 34 12 19 | isdlat | |- ( I e. DLat <-> ( I e. Lat /\ A. x e. ( Base ` I ) A. y e. ( Base ` I ) A. z e. ( Base ` I ) ( x ( meet ` I ) ( y ( join ` I ) z ) ) = ( ( x ( meet ` I ) y ) ( join ` I ) ( x ( meet ` I ) z ) ) ) ) |
| 36 | 4 33 35 | sylanbrc | |- ( J e. Top -> I e. DLat ) |