This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Joins in a topology are realized by unions. (Contributed by Zhi Wang, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | toplatmeet.i | ⊢ 𝐼 = ( toInc ‘ 𝐽 ) | |
| toplatmeet.j | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | ||
| toplatmeet.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) | ||
| toplatmeet.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐽 ) | ||
| toplatjoin.j | ⊢ ∨ = ( join ‘ 𝐼 ) | ||
| Assertion | toplatjoin | ⊢ ( 𝜑 → ( 𝐴 ∨ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toplatmeet.i | ⊢ 𝐼 = ( toInc ‘ 𝐽 ) | |
| 2 | toplatmeet.j | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | |
| 3 | toplatmeet.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) | |
| 4 | toplatmeet.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐽 ) | |
| 5 | toplatjoin.j | ⊢ ∨ = ( join ‘ 𝐼 ) | |
| 6 | eqid | ⊢ ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) | |
| 7 | 1 | ipopos | ⊢ 𝐼 ∈ Poset |
| 8 | 7 | a1i | ⊢ ( 𝜑 → 𝐼 ∈ Poset ) |
| 9 | 6 5 8 3 4 | joinval | ⊢ ( 𝜑 → ( 𝐴 ∨ 𝐵 ) = ( ( lub ‘ 𝐼 ) ‘ { 𝐴 , 𝐵 } ) ) |
| 10 | 3 4 | prssd | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ⊆ 𝐽 ) |
| 11 | 6 | a1i | ⊢ ( 𝜑 → ( lub ‘ 𝐼 ) = ( lub ‘ 𝐼 ) ) |
| 12 | uniprg | ⊢ ( ( 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) | |
| 13 | 3 4 12 | syl2anc | ⊢ ( 𝜑 → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
| 14 | unopn | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽 ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝐽 ) | |
| 15 | 2 3 4 14 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) ∈ 𝐽 ) |
| 16 | 13 15 | eqeltrd | ⊢ ( 𝜑 → ∪ { 𝐴 , 𝐵 } ∈ 𝐽 ) |
| 17 | intmin | ⊢ ( ∪ { 𝐴 , 𝐵 } ∈ 𝐽 → ∩ { 𝑥 ∈ 𝐽 ∣ ∪ { 𝐴 , 𝐵 } ⊆ 𝑥 } = ∪ { 𝐴 , 𝐵 } ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ∩ { 𝑥 ∈ 𝐽 ∣ ∪ { 𝐴 , 𝐵 } ⊆ 𝑥 } = ∪ { 𝐴 , 𝐵 } ) |
| 19 | 18 13 | eqtr2d | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = ∩ { 𝑥 ∈ 𝐽 ∣ ∪ { 𝐴 , 𝐵 } ⊆ 𝑥 } ) |
| 20 | 1 2 10 11 19 15 | ipolub | ⊢ ( 𝜑 → ( ( lub ‘ 𝐼 ) ‘ { 𝐴 , 𝐵 } ) = ( 𝐴 ∪ 𝐵 ) ) |
| 21 | 9 20 | eqtrd | ⊢ ( 𝜑 → ( 𝐴 ∨ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) ) |