This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a distributive lattice. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdlat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| isdlat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| isdlat.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | isdlat | ⊢ ( 𝐾 ∈ DLat ↔ ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdlat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | isdlat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | isdlat.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
| 6 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) ) | |
| 7 | 6 2 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ∨ ) |
| 8 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( meet ‘ 𝑘 ) = ( meet ‘ 𝐾 ) ) | |
| 9 | 8 3 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( meet ‘ 𝑘 ) = ∧ ) |
| 10 | 9 | sbceq1d | ⊢ ( 𝑘 = 𝐾 → ( [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ [ ∧ / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ) ) |
| 11 | 7 10 | sbceqbid | ⊢ ( 𝑘 = 𝐾 → ( [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ [ ∨ / 𝑗 ] [ ∧ / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ) ) |
| 12 | 5 11 | sbceqbid | ⊢ ( 𝑘 = 𝐾 → ( [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ [ 𝐵 / 𝑏 ] [ ∨ / 𝑗 ] [ ∧ / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ) ) |
| 13 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 14 | 2 | fvexi | ⊢ ∨ ∈ V |
| 15 | 3 | fvexi | ⊢ ∧ ∈ V |
| 16 | raleq | ⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ) ) | |
| 17 | 16 | raleqbi1dv | ⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ) ) |
| 18 | 17 | raleqbi1dv | ⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ) ) |
| 19 | simpr | ⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → 𝑚 = ∧ ) | |
| 20 | eqidd | ⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → 𝑥 = 𝑥 ) | |
| 21 | simpl | ⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → 𝑗 = ∨ ) | |
| 22 | 21 | oveqd | ⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( 𝑦 𝑗 𝑧 ) = ( 𝑦 ∨ 𝑧 ) ) |
| 23 | 19 20 22 | oveq123d | ⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) ) |
| 24 | 19 | oveqd | ⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( 𝑥 𝑚 𝑦 ) = ( 𝑥 ∧ 𝑦 ) ) |
| 25 | 19 | oveqd | ⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( 𝑥 𝑚 𝑧 ) = ( 𝑥 ∧ 𝑧 ) ) |
| 26 | 21 24 25 | oveq123d | ⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) |
| 27 | 23 26 | eqeq12d | ⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 28 | 27 | ralbidv | ⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 29 | 28 | 2ralbidv | ⊢ ( ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 30 | 18 29 | sylan9bb | ⊢ ( ( 𝑏 = 𝐵 ∧ ( 𝑗 = ∨ ∧ 𝑚 = ∧ ) ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 31 | 30 | 3impb | ⊢ ( ( 𝑏 = 𝐵 ∧ 𝑗 = ∨ ∧ 𝑚 = ∧ ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 32 | 13 14 15 31 | sbc3ie | ⊢ ( [ 𝐵 / 𝑏 ] [ ∨ / 𝑗 ] [ ∧ / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) |
| 33 | 12 32 | bitrdi | ⊢ ( 𝑘 = 𝐾 → ( [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |
| 34 | df-dlat | ⊢ DLat = { 𝑘 ∈ Lat ∣ [ ( Base ‘ 𝑘 ) / 𝑏 ] [ ( join ‘ 𝑘 ) / 𝑗 ] [ ( meet ‘ 𝑘 ) / 𝑚 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ( 𝑥 𝑚 ( 𝑦 𝑗 𝑧 ) ) = ( ( 𝑥 𝑚 𝑦 ) 𝑗 ( 𝑥 𝑚 𝑧 ) ) } | |
| 35 | 33 34 | elrab2 | ⊢ ( 𝐾 ∈ DLat ↔ ( 𝐾 ∈ Lat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ∧ ( 𝑦 ∨ 𝑧 ) ) = ( ( 𝑥 ∧ 𝑦 ) ∨ ( 𝑥 ∧ 𝑧 ) ) ) ) |