This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngngp.t | ||
| tngngp.x | |||
| tngngp.m | |||
| tngngp.z | |||
| tngngpd.1 | |||
| tngngpd.2 | |||
| tngngpd.3 | |||
| tngngpd.4 | |||
| Assertion | tngngpd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngngp.t | ||
| 2 | tngngp.x | ||
| 3 | tngngp.m | ||
| 4 | tngngp.z | ||
| 5 | tngngpd.1 | ||
| 6 | tngngpd.2 | ||
| 7 | tngngpd.3 | ||
| 8 | tngngpd.4 | ||
| 9 | 2 | fvexi | |
| 10 | reex | ||
| 11 | fex2 | ||
| 12 | 9 10 11 | mp3an23 | |
| 13 | 1 3 | tngds | |
| 14 | 6 12 13 | 3syl | |
| 15 | 2 3 4 5 6 7 8 | nrmmetd | |
| 16 | 14 15 | eqeltrrd | |
| 17 | eqid | ||
| 18 | 1 2 17 | tngngp2 | |
| 19 | 6 18 | syl | |
| 20 | 5 16 19 | mpbir2and |