This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006) (Revised by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgval | ⊢ ( 𝐵 ∈ 𝑉 → ( topGen ‘ 𝐵 ) = { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ 𝐴 ∈ { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ) ) |
| 3 | elex | ⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } → 𝐴 ∈ V ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ) → 𝐴 ∈ V ) |
| 5 | inex1g | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∩ 𝒫 𝐴 ) ∈ V ) | |
| 6 | 5 | uniexd | ⊢ ( 𝐵 ∈ 𝑉 → ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ∈ V ) |
| 7 | ssexg | ⊢ ( ( 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ∧ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ∈ V ) → 𝐴 ∈ V ) | |
| 8 | 6 7 | sylan2 | ⊢ ( ( 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) |
| 9 | 8 | ancoms | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) → 𝐴 ∈ V ) |
| 10 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 11 | pweq | ⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) | |
| 12 | 11 | ineq2d | ⊢ ( 𝑥 = 𝐴 → ( 𝐵 ∩ 𝒫 𝑥 ) = ( 𝐵 ∩ 𝒫 𝐴 ) ) |
| 13 | 12 | unieqd | ⊢ ( 𝑥 = 𝐴 → ∪ ( 𝐵 ∩ 𝒫 𝑥 ) = ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) |
| 14 | 10 13 | sseq12d | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) ↔ 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) ) |
| 15 | 14 | elabg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ↔ 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) ) |
| 16 | 4 9 15 | pm5.21nd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝑥 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝑥 ) } ↔ 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) ) |
| 17 | 2 16 | bitrd | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ∈ ( topGen ‘ 𝐵 ) ↔ 𝐴 ⊆ ∪ ( 𝐵 ∩ 𝒫 𝐴 ) ) ) |