This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Defining property of the transitive closure function: it is a subset of any transitive class containing A . (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tcmin | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ⊆ 𝐵 ∧ Tr 𝐵 ) → ( TC ‘ 𝐴 ) ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcvalg | ⊢ ( 𝐴 ∈ 𝑉 → ( TC ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ) | |
| 2 | fvex | ⊢ ( TC ‘ 𝐴 ) ∈ V | |
| 3 | 1 2 | eqeltrrdi | ⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) |
| 4 | intexab | ⊢ ( ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ↔ ∩ { 𝑥 ∣ ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) } ∈ V ) | |
| 5 | 3 4 | sylibr | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ) |
| 6 | ssin | ⊢ ( ( 𝐴 ⊆ 𝑥 ∧ 𝐴 ⊆ 𝐵 ) ↔ 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ) | |
| 7 | 6 | biimpi | ⊢ ( ( 𝐴 ⊆ 𝑥 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ) |
| 8 | trin | ⊢ ( ( Tr 𝑥 ∧ Tr 𝐵 ) → Tr ( 𝑥 ∩ 𝐵 ) ) | |
| 9 | 7 8 | anim12i | ⊢ ( ( ( 𝐴 ⊆ 𝑥 ∧ 𝐴 ⊆ 𝐵 ) ∧ ( Tr 𝑥 ∧ Tr 𝐵 ) ) → ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) ) |
| 10 | 9 | an4s | ⊢ ( ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ Tr 𝐵 ) ) → ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) ) |
| 11 | 10 | expcom | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ Tr 𝐵 ) → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) ) ) |
| 12 | vex | ⊢ 𝑥 ∈ V | |
| 13 | 12 | inex1 | ⊢ ( 𝑥 ∩ 𝐵 ) ∈ V |
| 14 | sseq2 | ⊢ ( 𝑦 = ( 𝑥 ∩ 𝐵 ) → ( 𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ) ) | |
| 15 | treq | ⊢ ( 𝑦 = ( 𝑥 ∩ 𝐵 ) → ( Tr 𝑦 ↔ Tr ( 𝑥 ∩ 𝐵 ) ) ) | |
| 16 | 14 15 | anbi12d | ⊢ ( 𝑦 = ( 𝑥 ∩ 𝐵 ) → ( ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) ↔ ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) ) ) |
| 17 | 13 16 | elab | ⊢ ( ( 𝑥 ∩ 𝐵 ) ∈ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ↔ ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) ) |
| 18 | intss1 | ⊢ ( ( 𝑥 ∩ 𝐵 ) ∈ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ ( 𝑥 ∩ 𝐵 ) ) | |
| 19 | 17 18 | sylbir | ⊢ ( ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ ( 𝑥 ∩ 𝐵 ) ) |
| 20 | inss2 | ⊢ ( 𝑥 ∩ 𝐵 ) ⊆ 𝐵 | |
| 21 | 19 20 | sstrdi | ⊢ ( ( 𝐴 ⊆ ( 𝑥 ∩ 𝐵 ) ∧ Tr ( 𝑥 ∩ 𝐵 ) ) → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ 𝐵 ) |
| 22 | 11 21 | syl6 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ Tr 𝐵 ) → ( ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ 𝐵 ) ) |
| 23 | 22 | exlimdv | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ Tr 𝐵 ) → ( ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ) → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ 𝐵 ) ) |
| 24 | 5 23 | syl5com | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ⊆ 𝐵 ∧ Tr 𝐵 ) → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ 𝐵 ) ) |
| 25 | tcvalg | ⊢ ( 𝐴 ∈ 𝑉 → ( TC ‘ 𝐴 ) = ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ) | |
| 26 | 25 | sseq1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( TC ‘ 𝐴 ) ⊆ 𝐵 ↔ ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ Tr 𝑦 ) } ⊆ 𝐵 ) ) |
| 27 | 24 26 | sylibrd | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ⊆ 𝐵 ∧ Tr 𝐵 ) → ( TC ‘ 𝐴 ) ⊆ 𝐵 ) ) |