This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Defining property of the transitive closure function: it is a subset of any transitive class containing A . (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tcmin | |- ( A e. V -> ( ( A C_ B /\ Tr B ) -> ( TC ` A ) C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcvalg | |- ( A e. V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |
|
| 2 | fvex | |- ( TC ` A ) e. _V |
|
| 3 | 1 2 | eqeltrrdi | |- ( A e. V -> |^| { x | ( A C_ x /\ Tr x ) } e. _V ) |
| 4 | intexab | |- ( E. x ( A C_ x /\ Tr x ) <-> |^| { x | ( A C_ x /\ Tr x ) } e. _V ) |
|
| 5 | 3 4 | sylibr | |- ( A e. V -> E. x ( A C_ x /\ Tr x ) ) |
| 6 | ssin | |- ( ( A C_ x /\ A C_ B ) <-> A C_ ( x i^i B ) ) |
|
| 7 | 6 | biimpi | |- ( ( A C_ x /\ A C_ B ) -> A C_ ( x i^i B ) ) |
| 8 | trin | |- ( ( Tr x /\ Tr B ) -> Tr ( x i^i B ) ) |
|
| 9 | 7 8 | anim12i | |- ( ( ( A C_ x /\ A C_ B ) /\ ( Tr x /\ Tr B ) ) -> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) ) |
| 10 | 9 | an4s | |- ( ( ( A C_ x /\ Tr x ) /\ ( A C_ B /\ Tr B ) ) -> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) ) |
| 11 | 10 | expcom | |- ( ( A C_ B /\ Tr B ) -> ( ( A C_ x /\ Tr x ) -> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) ) ) |
| 12 | vex | |- x e. _V |
|
| 13 | 12 | inex1 | |- ( x i^i B ) e. _V |
| 14 | sseq2 | |- ( y = ( x i^i B ) -> ( A C_ y <-> A C_ ( x i^i B ) ) ) |
|
| 15 | treq | |- ( y = ( x i^i B ) -> ( Tr y <-> Tr ( x i^i B ) ) ) |
|
| 16 | 14 15 | anbi12d | |- ( y = ( x i^i B ) -> ( ( A C_ y /\ Tr y ) <-> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) ) ) |
| 17 | 13 16 | elab | |- ( ( x i^i B ) e. { y | ( A C_ y /\ Tr y ) } <-> ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) ) |
| 18 | intss1 | |- ( ( x i^i B ) e. { y | ( A C_ y /\ Tr y ) } -> |^| { y | ( A C_ y /\ Tr y ) } C_ ( x i^i B ) ) |
|
| 19 | 17 18 | sylbir | |- ( ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ ( x i^i B ) ) |
| 20 | inss2 | |- ( x i^i B ) C_ B |
|
| 21 | 19 20 | sstrdi | |- ( ( A C_ ( x i^i B ) /\ Tr ( x i^i B ) ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) |
| 22 | 11 21 | syl6 | |- ( ( A C_ B /\ Tr B ) -> ( ( A C_ x /\ Tr x ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) ) |
| 23 | 22 | exlimdv | |- ( ( A C_ B /\ Tr B ) -> ( E. x ( A C_ x /\ Tr x ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) ) |
| 24 | 5 23 | syl5com | |- ( A e. V -> ( ( A C_ B /\ Tr B ) -> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) ) |
| 25 | tcvalg | |- ( A e. V -> ( TC ` A ) = |^| { y | ( A C_ y /\ Tr y ) } ) |
|
| 26 | 25 | sseq1d | |- ( A e. V -> ( ( TC ` A ) C_ B <-> |^| { y | ( A C_ y /\ Tr y ) } C_ B ) ) |
| 27 | 24 26 | sylibrd | |- ( A e. V -> ( ( A C_ B /\ Tr B ) -> ( TC ` A ) C_ B ) ) |