This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The tangent of a negative is the negative of the tangent. (Contributed by David A. Wheeler, 23-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanneg | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` -u A ) = -u ( tan ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 2 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 3 | divneg | |- ( ( ( sin ` A ) e. CC /\ ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( sin ` A ) / ( cos ` A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
|
| 4 | 2 3 | syl3an1 | |- ( ( A e. CC /\ ( cos ` A ) e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( sin ` A ) / ( cos ` A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
| 5 | 1 4 | syl3an2 | |- ( ( A e. CC /\ A e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( sin ` A ) / ( cos ` A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
| 6 | 5 | 3anidm12 | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( ( sin ` A ) / ( cos ` A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
| 7 | tanval | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
|
| 8 | 7 | negeqd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> -u ( tan ` A ) = -u ( ( sin ` A ) / ( cos ` A ) ) ) |
| 9 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 10 | cosneg | |- ( A e. CC -> ( cos ` -u A ) = ( cos ` A ) ) |
|
| 11 | 10 | adantr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` -u A ) = ( cos ` A ) ) |
| 12 | simpr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) =/= 0 ) |
|
| 13 | 11 12 | eqnetrd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` -u A ) =/= 0 ) |
| 14 | tanval | |- ( ( -u A e. CC /\ ( cos ` -u A ) =/= 0 ) -> ( tan ` -u A ) = ( ( sin ` -u A ) / ( cos ` -u A ) ) ) |
|
| 15 | 9 13 14 | syl2an2r | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` -u A ) = ( ( sin ` -u A ) / ( cos ` -u A ) ) ) |
| 16 | sinneg | |- ( A e. CC -> ( sin ` -u A ) = -u ( sin ` A ) ) |
|
| 17 | 16 10 | oveq12d | |- ( A e. CC -> ( ( sin ` -u A ) / ( cos ` -u A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
| 18 | 17 | adantr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` -u A ) / ( cos ` -u A ) ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
| 19 | 15 18 | eqtrd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` -u A ) = ( -u ( sin ` A ) / ( cos ` A ) ) ) |
| 20 | 6 8 19 | 3eqtr4rd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` -u A ) = -u ( tan ` A ) ) |