This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the hyperbolic cosine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coshval | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 4 | cosval | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) + ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) / 2 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) + ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) / 2 ) ) |
| 6 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 7 | efcl | ⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ ) |
| 9 | efcl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) | |
| 10 | ixi | ⊢ ( i · i ) = - 1 | |
| 11 | 10 | oveq1i | ⊢ ( ( i · i ) · 𝐴 ) = ( - 1 · 𝐴 ) |
| 12 | mulass | ⊢ ( ( i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( i · i ) · 𝐴 ) = ( i · ( i · 𝐴 ) ) ) | |
| 13 | 1 1 12 | mp3an12 | ⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · 𝐴 ) = ( i · ( i · 𝐴 ) ) ) |
| 14 | mulm1 | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) | |
| 15 | 11 13 14 | 3eqtr3a | ⊢ ( 𝐴 ∈ ℂ → ( i · ( i · 𝐴 ) ) = - 𝐴 ) |
| 16 | 15 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( i · 𝐴 ) ) ) = ( exp ‘ - 𝐴 ) ) |
| 17 | 1 1 | mulneg1i | ⊢ ( - i · i ) = - ( i · i ) |
| 18 | 10 | negeqi | ⊢ - ( i · i ) = - - 1 |
| 19 | negneg1e1 | ⊢ - - 1 = 1 | |
| 20 | 17 18 19 | 3eqtri | ⊢ ( - i · i ) = 1 |
| 21 | 20 | oveq1i | ⊢ ( ( - i · i ) · 𝐴 ) = ( 1 · 𝐴 ) |
| 22 | negicn | ⊢ - i ∈ ℂ | |
| 23 | mulass | ⊢ ( ( - i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( - i · i ) · 𝐴 ) = ( - i · ( i · 𝐴 ) ) ) | |
| 24 | 22 1 23 | mp3an12 | ⊢ ( 𝐴 ∈ ℂ → ( ( - i · i ) · 𝐴 ) = ( - i · ( i · 𝐴 ) ) ) |
| 25 | mullid | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
| 26 | 21 24 25 | 3eqtr3a | ⊢ ( 𝐴 ∈ ℂ → ( - i · ( i · 𝐴 ) ) = 𝐴 ) |
| 27 | 26 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( i · 𝐴 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 28 | 16 27 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) + ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) = ( ( exp ‘ - 𝐴 ) + ( exp ‘ 𝐴 ) ) ) |
| 29 | 8 9 28 | comraddd | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) + ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) = ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) ) |
| 30 | 29 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) + ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) / 2 ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 31 | 5 30 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) + ( exp ‘ - 𝐴 ) ) / 2 ) ) |