This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the hyperbolic sine of a complex number. (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinhval | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixi | ⊢ ( i · i ) = - 1 | |
| 2 | 1 | oveq1i | ⊢ ( ( i · i ) · 𝐴 ) = ( - 1 · 𝐴 ) |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | mulass | ⊢ ( ( i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( i · i ) · 𝐴 ) = ( i · ( i · 𝐴 ) ) ) | |
| 5 | 3 3 4 | mp3an12 | ⊢ ( 𝐴 ∈ ℂ → ( ( i · i ) · 𝐴 ) = ( i · ( i · 𝐴 ) ) ) |
| 6 | mulm1 | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · 𝐴 ) = - 𝐴 ) | |
| 7 | 2 5 6 | 3eqtr3a | ⊢ ( 𝐴 ∈ ℂ → ( i · ( i · 𝐴 ) ) = - 𝐴 ) |
| 8 | 7 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( i · 𝐴 ) ) ) = ( exp ‘ - 𝐴 ) ) |
| 9 | 3 3 | mulneg1i | ⊢ ( - i · i ) = - ( i · i ) |
| 10 | 1 | negeqi | ⊢ - ( i · i ) = - - 1 |
| 11 | negneg1e1 | ⊢ - - 1 = 1 | |
| 12 | 10 11 | eqtri | ⊢ - ( i · i ) = 1 |
| 13 | 9 12 | eqtri | ⊢ ( - i · i ) = 1 |
| 14 | 13 | oveq1i | ⊢ ( ( - i · i ) · 𝐴 ) = ( 1 · 𝐴 ) |
| 15 | negicn | ⊢ - i ∈ ℂ | |
| 16 | mulass | ⊢ ( ( - i ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( - i · i ) · 𝐴 ) = ( - i · ( i · 𝐴 ) ) ) | |
| 17 | 15 3 16 | mp3an12 | ⊢ ( 𝐴 ∈ ℂ → ( ( - i · i ) · 𝐴 ) = ( - i · ( i · 𝐴 ) ) ) |
| 18 | mullid | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
| 19 | 14 17 18 | 3eqtr3a | ⊢ ( 𝐴 ∈ ℂ → ( - i · ( i · 𝐴 ) ) = 𝐴 ) |
| 20 | 19 | fveq2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( i · 𝐴 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 21 | 8 20 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) − ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) = ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) ) |
| 22 | 21 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) − ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) / ( 2 · i ) ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
| 23 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 24 | 3 23 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 25 | sinval | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( sin ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) − ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) / ( 2 · i ) ) ) | |
| 26 | 24 25 | syl | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( i · 𝐴 ) ) = ( ( ( exp ‘ ( i · ( i · 𝐴 ) ) ) − ( exp ‘ ( - i · ( i · 𝐴 ) ) ) ) / ( 2 · i ) ) ) |
| 27 | irec | ⊢ ( 1 / i ) = - i | |
| 28 | 27 | negeqi | ⊢ - ( 1 / i ) = - - i |
| 29 | 3 | negnegi | ⊢ - - i = i |
| 30 | 28 29 | eqtri | ⊢ - ( 1 / i ) = i |
| 31 | 30 | oveq1i | ⊢ ( - ( 1 / i ) · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( i · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 32 | ine0 | ⊢ i ≠ 0 | |
| 33 | 3 32 | reccli | ⊢ ( 1 / i ) ∈ ℂ |
| 34 | efcl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) | |
| 35 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 36 | efcl | ⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ ) | |
| 37 | 35 36 | syl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - 𝐴 ) ∈ ℂ ) |
| 38 | 34 37 | subcld | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) ∈ ℂ ) |
| 39 | 38 | halfcld | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ∈ ℂ ) |
| 40 | mulneg12 | ⊢ ( ( ( 1 / i ) ∈ ℂ ∧ ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ∈ ℂ ) → ( - ( 1 / i ) · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( 1 / i ) · - ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) ) | |
| 41 | 33 39 40 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( - ( 1 / i ) · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( 1 / i ) · - ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
| 42 | 2cnd | ⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℂ ) | |
| 43 | 2ne0 | ⊢ 2 ≠ 0 | |
| 44 | 43 | a1i | ⊢ ( 𝐴 ∈ ℂ → 2 ≠ 0 ) |
| 45 | 38 42 44 | divnegd | ⊢ ( 𝐴 ∈ ℂ → - ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) = ( - ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 46 | 34 37 | negsubdi2d | ⊢ ( 𝐴 ∈ ℂ → - ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) = ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) ) |
| 47 | 46 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( - ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) ) |
| 48 | 45 47 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → - ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) ) |
| 49 | 48 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 / i ) · - ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( 1 / i ) · ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) ) ) |
| 50 | 37 34 | subcld | ⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) ∈ ℂ ) |
| 51 | 50 | halfcld | ⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) ∈ ℂ ) |
| 52 | 3 | a1i | ⊢ ( 𝐴 ∈ ℂ → i ∈ ℂ ) |
| 53 | 32 | a1i | ⊢ ( 𝐴 ∈ ℂ → i ≠ 0 ) |
| 54 | 51 52 53 | divrec2d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) / i ) = ( ( 1 / i ) · ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) ) ) |
| 55 | 50 42 52 44 53 | divdiv1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / 2 ) / i ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
| 56 | 49 54 55 | 3eqtr2d | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 / i ) · - ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
| 57 | 41 56 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( - ( 1 / i ) · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
| 58 | 31 57 | eqtr3id | ⊢ ( 𝐴 ∈ ℂ → ( i · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) = ( ( ( exp ‘ - 𝐴 ) − ( exp ‘ 𝐴 ) ) / ( 2 · i ) ) ) |
| 59 | 22 26 58 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( i · 𝐴 ) ) = ( i · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) ) |
| 60 | 59 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( i · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) / i ) ) |
| 61 | 39 52 53 | divcan3d | ⊢ ( 𝐴 ∈ ℂ → ( ( i · ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |
| 62 | 60 61 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( i · 𝐴 ) ) / i ) = ( ( ( exp ‘ 𝐴 ) − ( exp ‘ - 𝐴 ) ) / 2 ) ) |