This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The tangent function is greater than or equal to its argument in absolute value. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanabsge | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( abs ` A ) <_ ( abs ` ( tan ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elioore | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. RR ) |
|
| 2 | 1 | adantr | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> A e. RR ) |
| 3 | 2 | renegcld | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A e. RR ) |
| 4 | 1 | lt0neg1d | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < 0 <-> 0 < -u A ) ) |
| 5 | 4 | biimpa | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 < -u A ) |
| 6 | eliooord | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( -u ( _pi / 2 ) < A /\ A < ( _pi / 2 ) ) ) |
|
| 7 | 6 | simpld | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> -u ( _pi / 2 ) < A ) |
| 8 | 7 | adantr | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u ( _pi / 2 ) < A ) |
| 9 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 10 | ltnegcon1 | |- ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( -u ( _pi / 2 ) < A <-> -u A < ( _pi / 2 ) ) ) |
|
| 11 | 9 2 10 | sylancr | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( -u ( _pi / 2 ) < A <-> -u A < ( _pi / 2 ) ) ) |
| 12 | 8 11 | mpbid | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A < ( _pi / 2 ) ) |
| 13 | 0xr | |- 0 e. RR* |
|
| 14 | 9 | rexri | |- ( _pi / 2 ) e. RR* |
| 15 | elioo2 | |- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( -u A e. ( 0 (,) ( _pi / 2 ) ) <-> ( -u A e. RR /\ 0 < -u A /\ -u A < ( _pi / 2 ) ) ) ) |
|
| 16 | 13 14 15 | mp2an | |- ( -u A e. ( 0 (,) ( _pi / 2 ) ) <-> ( -u A e. RR /\ 0 < -u A /\ -u A < ( _pi / 2 ) ) ) |
| 17 | 3 5 12 16 | syl3anbrc | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A e. ( 0 (,) ( _pi / 2 ) ) ) |
| 18 | sincosq1sgn | |- ( -u A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` -u A ) /\ 0 < ( cos ` -u A ) ) ) |
|
| 19 | 17 18 | syl | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( 0 < ( sin ` -u A ) /\ 0 < ( cos ` -u A ) ) ) |
| 20 | 19 | simprd | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 < ( cos ` -u A ) ) |
| 21 | 20 | gt0ne0d | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( cos ` -u A ) =/= 0 ) |
| 22 | 3 21 | retancld | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` -u A ) e. RR ) |
| 23 | tangtx | |- ( -u A e. ( 0 (,) ( _pi / 2 ) ) -> -u A < ( tan ` -u A ) ) |
|
| 24 | 17 23 | syl | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A < ( tan ` -u A ) ) |
| 25 | 3 22 24 | ltled | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A <_ ( tan ` -u A ) ) |
| 26 | 0re | |- 0 e. RR |
|
| 27 | ltle | |- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 -> A <_ 0 ) ) |
|
| 28 | 1 26 27 | sylancl | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < 0 -> A <_ 0 ) ) |
| 29 | 28 | imp | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> A <_ 0 ) |
| 30 | 2 29 | absnidd | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` A ) = -u A ) |
| 31 | 1 | recnd | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. CC ) |
| 32 | 31 | adantr | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> A e. CC ) |
| 33 | 32 | negnegd | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u -u A = A ) |
| 34 | 33 | fveq2d | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` -u -u A ) = ( tan ` A ) ) |
| 35 | 32 | negcld | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> -u A e. CC ) |
| 36 | tanneg | |- ( ( -u A e. CC /\ ( cos ` -u A ) =/= 0 ) -> ( tan ` -u -u A ) = -u ( tan ` -u A ) ) |
|
| 37 | 35 21 36 | syl2anc | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` -u -u A ) = -u ( tan ` -u A ) ) |
| 38 | 34 37 | eqtr3d | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` A ) = -u ( tan ` -u A ) ) |
| 39 | 38 | fveq2d | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` ( tan ` A ) ) = ( abs ` -u ( tan ` -u A ) ) ) |
| 40 | 22 | recnd | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( tan ` -u A ) e. CC ) |
| 41 | 40 | absnegd | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` -u ( tan ` -u A ) ) = ( abs ` ( tan ` -u A ) ) ) |
| 42 | 0red | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 e. RR ) |
|
| 43 | ltle | |- ( ( 0 e. RR /\ -u A e. RR ) -> ( 0 < -u A -> 0 <_ -u A ) ) |
|
| 44 | 26 3 43 | sylancr | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( 0 < -u A -> 0 <_ -u A ) ) |
| 45 | 5 44 | mpd | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 <_ -u A ) |
| 46 | 42 3 22 45 25 | letrd | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> 0 <_ ( tan ` -u A ) ) |
| 47 | 22 46 | absidd | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` ( tan ` -u A ) ) = ( tan ` -u A ) ) |
| 48 | 39 41 47 | 3eqtrd | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` ( tan ` A ) ) = ( tan ` -u A ) ) |
| 49 | 25 30 48 | 3brtr4d | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A < 0 ) -> ( abs ` A ) <_ ( abs ` ( tan ` A ) ) ) |
| 50 | abs0 | |- ( abs ` 0 ) = 0 |
|
| 51 | 50 26 | eqeltri | |- ( abs ` 0 ) e. RR |
| 52 | 51 | leidi | |- ( abs ` 0 ) <_ ( abs ` 0 ) |
| 53 | 52 | a1i | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( abs ` 0 ) <_ ( abs ` 0 ) ) |
| 54 | simpr | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> A = 0 ) |
|
| 55 | 54 | fveq2d | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( abs ` A ) = ( abs ` 0 ) ) |
| 56 | 54 | fveq2d | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( tan ` A ) = ( tan ` 0 ) ) |
| 57 | tan0 | |- ( tan ` 0 ) = 0 |
|
| 58 | 56 57 | eqtrdi | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( tan ` A ) = 0 ) |
| 59 | 58 | fveq2d | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( abs ` ( tan ` A ) ) = ( abs ` 0 ) ) |
| 60 | 53 55 59 | 3brtr4d | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ A = 0 ) -> ( abs ` A ) <_ ( abs ` ( tan ` A ) ) ) |
| 61 | 1 | adantr | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A e. RR ) |
| 62 | simpr | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 < A ) |
|
| 63 | 6 | simprd | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A < ( _pi / 2 ) ) |
| 64 | 63 | adantr | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A < ( _pi / 2 ) ) |
| 65 | elioo2 | |- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) ) |
|
| 66 | 13 14 65 | mp2an | |- ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) |
| 67 | 61 62 64 66 | syl3anbrc | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A e. ( 0 (,) ( _pi / 2 ) ) ) |
| 68 | sincosq1sgn | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |
|
| 69 | 67 68 | syl | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |
| 70 | 69 | simprd | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 < ( cos ` A ) ) |
| 71 | 70 | gt0ne0d | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( cos ` A ) =/= 0 ) |
| 72 | 61 71 | retancld | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( tan ` A ) e. RR ) |
| 73 | tangtx | |- ( A e. ( 0 (,) ( _pi / 2 ) ) -> A < ( tan ` A ) ) |
|
| 74 | 67 73 | syl | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A < ( tan ` A ) ) |
| 75 | 61 72 74 | ltled | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> A <_ ( tan ` A ) ) |
| 76 | ltle | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
|
| 77 | 26 1 76 | sylancr | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( 0 < A -> 0 <_ A ) ) |
| 78 | 77 | imp | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 <_ A ) |
| 79 | 61 78 | absidd | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( abs ` A ) = A ) |
| 80 | 0red | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 e. RR ) |
|
| 81 | 80 61 72 78 75 | letrd | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> 0 <_ ( tan ` A ) ) |
| 82 | 72 81 | absidd | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( abs ` ( tan ` A ) ) = ( tan ` A ) ) |
| 83 | 75 79 82 | 3brtr4d | |- ( ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) /\ 0 < A ) -> ( abs ` A ) <_ ( abs ` ( tan ` A ) ) ) |
| 84 | lttri4 | |- ( ( A e. RR /\ 0 e. RR ) -> ( A < 0 \/ A = 0 \/ 0 < A ) ) |
|
| 85 | 1 26 84 | sylancl | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < 0 \/ A = 0 \/ 0 < A ) ) |
| 86 | 49 60 83 85 | mpjao3dan | |- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( abs ` A ) <_ ( abs ` ( tan ` A ) ) ) |