This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symggrp.1 | ||
| symginv.2 | |||
| symginv.3 | |||
| Assertion | symginv |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symggrp.1 | ||
| 2 | symginv.2 | ||
| 3 | symginv.3 | ||
| 4 | 1 2 | elsymgbas2 | |
| 5 | 4 | ibi | |
| 6 | f1ocnv | ||
| 7 | 5 6 | syl | |
| 8 | cnvexg | ||
| 9 | 1 2 | elsymgbas2 | |
| 10 | 8 9 | syl | |
| 11 | 7 10 | mpbird | |
| 12 | eqid | ||
| 13 | 1 2 12 | symgov | |
| 14 | 11 13 | mpdan | |
| 15 | f1ococnv2 | ||
| 16 | 5 15 | syl | |
| 17 | 1 2 | elbasfv | |
| 18 | 1 | symgid | |
| 19 | 17 18 | syl | |
| 20 | 14 16 19 | 3eqtrd | |
| 21 | 1 | symggrp | |
| 22 | 17 21 | syl | |
| 23 | id | ||
| 24 | eqid | ||
| 25 | 2 12 24 3 | grpinvid1 | |
| 26 | 22 23 11 25 | syl3anc | |
| 27 | 20 26 | mpbird |