This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for double subtraction. (Contributed by NM, 13-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 − 𝐵 ) + 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsub2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐵 − 𝐶 ) ) = ( 𝐴 + ( 𝐶 − 𝐵 ) ) ) | |
| 2 | addsubass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − 𝐵 ) = ( 𝐴 + ( 𝐶 − 𝐵 ) ) ) | |
| 3 | addsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐶 ) − 𝐵 ) = ( ( 𝐴 − 𝐵 ) + 𝐶 ) ) | |
| 4 | 2 3 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( 𝐶 − 𝐵 ) ) = ( ( 𝐴 − 𝐵 ) + 𝐶 ) ) |
| 5 | 4 | 3com23 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + ( 𝐶 − 𝐵 ) ) = ( ( 𝐴 − 𝐵 ) + 𝐶 ) ) |
| 6 | 1 5 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 − 𝐵 ) + 𝐶 ) ) |