This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for the support of a function operation to be a subset of the union of the supports of the left and right function terms. (Contributed by Steven Nguyen, 28-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppofssd.1 | |- ( ph -> A e. V ) |
|
| suppofssd.2 | |- ( ph -> Z e. B ) |
||
| suppofssd.3 | |- ( ph -> F : A --> B ) |
||
| suppofssd.4 | |- ( ph -> G : A --> B ) |
||
| suppofssd.5 | |- ( ph -> ( Z X Z ) = Z ) |
||
| Assertion | suppofssd | |- ( ph -> ( ( F oF X G ) supp Z ) C_ ( ( F supp Z ) u. ( G supp Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppofssd.1 | |- ( ph -> A e. V ) |
|
| 2 | suppofssd.2 | |- ( ph -> Z e. B ) |
|
| 3 | suppofssd.3 | |- ( ph -> F : A --> B ) |
|
| 4 | suppofssd.4 | |- ( ph -> G : A --> B ) |
|
| 5 | suppofssd.5 | |- ( ph -> ( Z X Z ) = Z ) |
|
| 6 | ovexd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x X y ) e. _V ) |
|
| 7 | inidm | |- ( A i^i A ) = A |
|
| 8 | 6 3 4 1 1 7 | off | |- ( ph -> ( F oF X G ) : A --> _V ) |
| 9 | eldif | |- ( k e. ( A \ ( ( F supp Z ) u. ( G supp Z ) ) ) <-> ( k e. A /\ -. k e. ( ( F supp Z ) u. ( G supp Z ) ) ) ) |
|
| 10 | ioran | |- ( -. ( k e. ( F supp Z ) \/ k e. ( G supp Z ) ) <-> ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) |
|
| 11 | elun | |- ( k e. ( ( F supp Z ) u. ( G supp Z ) ) <-> ( k e. ( F supp Z ) \/ k e. ( G supp Z ) ) ) |
|
| 12 | 10 11 | xchnxbir | |- ( -. k e. ( ( F supp Z ) u. ( G supp Z ) ) <-> ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) |
| 13 | 12 | anbi2i | |- ( ( k e. A /\ -. k e. ( ( F supp Z ) u. ( G supp Z ) ) ) <-> ( k e. A /\ ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) ) |
| 14 | 9 13 | bitri | |- ( k e. ( A \ ( ( F supp Z ) u. ( G supp Z ) ) ) <-> ( k e. A /\ ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) ) |
| 15 | 3 | ffnd | |- ( ph -> F Fn A ) |
| 16 | elsuppfn | |- ( ( F Fn A /\ A e. V /\ Z e. B ) -> ( k e. ( F supp Z ) <-> ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
|
| 17 | 15 1 2 16 | syl3anc | |- ( ph -> ( k e. ( F supp Z ) <-> ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
| 18 | 17 | notbid | |- ( ph -> ( -. k e. ( F supp Z ) <-> -. ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
| 19 | 18 | biimpd | |- ( ph -> ( -. k e. ( F supp Z ) -> -. ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
| 20 | 4 | ffnd | |- ( ph -> G Fn A ) |
| 21 | elsuppfn | |- ( ( G Fn A /\ A e. V /\ Z e. B ) -> ( k e. ( G supp Z ) <-> ( k e. A /\ ( G ` k ) =/= Z ) ) ) |
|
| 22 | 20 1 2 21 | syl3anc | |- ( ph -> ( k e. ( G supp Z ) <-> ( k e. A /\ ( G ` k ) =/= Z ) ) ) |
| 23 | 22 | notbid | |- ( ph -> ( -. k e. ( G supp Z ) <-> -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) |
| 24 | 23 | biimpd | |- ( ph -> ( -. k e. ( G supp Z ) -> -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) |
| 25 | 19 24 | anim12d | |- ( ph -> ( ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) -> ( -. ( k e. A /\ ( F ` k ) =/= Z ) /\ -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) ) |
| 26 | 25 | anim2d | |- ( ph -> ( ( k e. A /\ ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) -> ( k e. A /\ ( -. ( k e. A /\ ( F ` k ) =/= Z ) /\ -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) ) ) |
| 27 | 26 | imp | |- ( ( ph /\ ( k e. A /\ ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) ) -> ( k e. A /\ ( -. ( k e. A /\ ( F ` k ) =/= Z ) /\ -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) ) |
| 28 | pm3.2 | |- ( k e. A -> ( ( F ` k ) =/= Z -> ( k e. A /\ ( F ` k ) =/= Z ) ) ) |
|
| 29 | 28 | necon1bd | |- ( k e. A -> ( -. ( k e. A /\ ( F ` k ) =/= Z ) -> ( F ` k ) = Z ) ) |
| 30 | pm3.2 | |- ( k e. A -> ( ( G ` k ) =/= Z -> ( k e. A /\ ( G ` k ) =/= Z ) ) ) |
|
| 31 | 30 | necon1bd | |- ( k e. A -> ( -. ( k e. A /\ ( G ` k ) =/= Z ) -> ( G ` k ) = Z ) ) |
| 32 | 29 31 | anim12d | |- ( k e. A -> ( ( -. ( k e. A /\ ( F ` k ) =/= Z ) /\ -. ( k e. A /\ ( G ` k ) =/= Z ) ) -> ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) |
| 33 | 32 | imdistani | |- ( ( k e. A /\ ( -. ( k e. A /\ ( F ` k ) =/= Z ) /\ -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) -> ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) |
| 34 | 15 | adantr | |- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> F Fn A ) |
| 35 | 20 | adantr | |- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> G Fn A ) |
| 36 | 1 | adantr | |- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> A e. V ) |
| 37 | simprl | |- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> k e. A ) |
|
| 38 | fnfvof | |- ( ( ( F Fn A /\ G Fn A ) /\ ( A e. V /\ k e. A ) ) -> ( ( F oF X G ) ` k ) = ( ( F ` k ) X ( G ` k ) ) ) |
|
| 39 | 34 35 36 37 38 | syl22anc | |- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> ( ( F oF X G ) ` k ) = ( ( F ` k ) X ( G ` k ) ) ) |
| 40 | oveq12 | |- ( ( ( F ` k ) = Z /\ ( G ` k ) = Z ) -> ( ( F ` k ) X ( G ` k ) ) = ( Z X Z ) ) |
|
| 41 | 40 | ad2antll | |- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> ( ( F ` k ) X ( G ` k ) ) = ( Z X Z ) ) |
| 42 | 5 | adantr | |- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> ( Z X Z ) = Z ) |
| 43 | 39 41 42 | 3eqtrd | |- ( ( ph /\ ( k e. A /\ ( ( F ` k ) = Z /\ ( G ` k ) = Z ) ) ) -> ( ( F oF X G ) ` k ) = Z ) |
| 44 | 33 43 | sylan2 | |- ( ( ph /\ ( k e. A /\ ( -. ( k e. A /\ ( F ` k ) =/= Z ) /\ -. ( k e. A /\ ( G ` k ) =/= Z ) ) ) ) -> ( ( F oF X G ) ` k ) = Z ) |
| 45 | 27 44 | syldan | |- ( ( ph /\ ( k e. A /\ ( -. k e. ( F supp Z ) /\ -. k e. ( G supp Z ) ) ) ) -> ( ( F oF X G ) ` k ) = Z ) |
| 46 | 14 45 | sylan2b | |- ( ( ph /\ k e. ( A \ ( ( F supp Z ) u. ( G supp Z ) ) ) ) -> ( ( F oF X G ) ` k ) = Z ) |
| 47 | 8 46 | suppss | |- ( ph -> ( ( F oF X G ) supp Z ) C_ ( ( F supp Z ) u. ( G supp Z ) ) ) |