This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of upper sets of integers is a filter base on ZZ , which corresponds to convergence of sequences on ZZ . (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfbas | ⊢ ran ℤ≥ ∈ ( fBas ‘ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 2 | frn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ran ℤ≥ ⊆ 𝒫 ℤ ) | |
| 3 | 1 2 | ax-mp | ⊢ ran ℤ≥ ⊆ 𝒫 ℤ |
| 4 | ffn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) | |
| 5 | 1 4 | ax-mp | ⊢ ℤ≥ Fn ℤ |
| 6 | 1z | ⊢ 1 ∈ ℤ | |
| 7 | fnfvelrn | ⊢ ( ( ℤ≥ Fn ℤ ∧ 1 ∈ ℤ ) → ( ℤ≥ ‘ 1 ) ∈ ran ℤ≥ ) | |
| 8 | 5 6 7 | mp2an | ⊢ ( ℤ≥ ‘ 1 ) ∈ ran ℤ≥ |
| 9 | 8 | ne0ii | ⊢ ran ℤ≥ ≠ ∅ |
| 10 | uzid | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ( ℤ≥ ‘ 𝑥 ) ) | |
| 11 | n0i | ⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 𝑥 ) → ¬ ( ℤ≥ ‘ 𝑥 ) = ∅ ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑥 ∈ ℤ → ¬ ( ℤ≥ ‘ 𝑥 ) = ∅ ) |
| 13 | 12 | nrex | ⊢ ¬ ∃ 𝑥 ∈ ℤ ( ℤ≥ ‘ 𝑥 ) = ∅ |
| 14 | fvelrnb | ⊢ ( ℤ≥ Fn ℤ → ( ∅ ∈ ran ℤ≥ ↔ ∃ 𝑥 ∈ ℤ ( ℤ≥ ‘ 𝑥 ) = ∅ ) ) | |
| 15 | 5 14 | ax-mp | ⊢ ( ∅ ∈ ran ℤ≥ ↔ ∃ 𝑥 ∈ ℤ ( ℤ≥ ‘ 𝑥 ) = ∅ ) |
| 16 | 13 15 | mtbir | ⊢ ¬ ∅ ∈ ran ℤ≥ |
| 17 | 16 | nelir | ⊢ ∅ ∉ ran ℤ≥ |
| 18 | uzin2 | ⊢ ( ( 𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥ ) → ( 𝑥 ∩ 𝑦 ) ∈ ran ℤ≥ ) | |
| 19 | vex | ⊢ 𝑥 ∈ V | |
| 20 | 19 | inex1 | ⊢ ( 𝑥 ∩ 𝑦 ) ∈ V |
| 21 | 20 | pwid | ⊢ ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) |
| 22 | inelcm | ⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ ran ℤ≥ ∧ ( 𝑥 ∩ 𝑦 ) ∈ 𝒫 ( 𝑥 ∩ 𝑦 ) ) → ( ran ℤ≥ ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) | |
| 23 | 18 21 22 | sylancl | ⊢ ( ( 𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥ ) → ( ran ℤ≥ ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) |
| 24 | 23 | rgen2 | ⊢ ∀ 𝑥 ∈ ran ℤ≥ ∀ 𝑦 ∈ ran ℤ≥ ( ran ℤ≥ ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ |
| 25 | 9 17 24 | 3pm3.2i | ⊢ ( ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀ 𝑥 ∈ ran ℤ≥ ∀ 𝑦 ∈ ran ℤ≥ ( ran ℤ≥ ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) |
| 26 | zex | ⊢ ℤ ∈ V | |
| 27 | isfbas | ⊢ ( ℤ ∈ V → ( ran ℤ≥ ∈ ( fBas ‘ ℤ ) ↔ ( ran ℤ≥ ⊆ 𝒫 ℤ ∧ ( ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀ 𝑥 ∈ ran ℤ≥ ∀ 𝑦 ∈ ran ℤ≥ ( ran ℤ≥ ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) ) | |
| 28 | 26 27 | ax-mp | ⊢ ( ran ℤ≥ ∈ ( fBas ‘ ℤ ) ↔ ( ran ℤ≥ ⊆ 𝒫 ℤ ∧ ( ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀ 𝑥 ∈ ran ℤ≥ ∀ 𝑦 ∈ ran ℤ≥ ( ran ℤ≥ ∩ 𝒫 ( 𝑥 ∩ 𝑦 ) ) ≠ ∅ ) ) ) |
| 29 | 3 25 28 | mpbir2an | ⊢ ran ℤ≥ ∈ ( fBas ‘ ℤ ) |