This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | summo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| summo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| summo.3 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) | ||
| Assertion | summo | ⊢ ( 𝜑 → ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | summo.1 | ⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| 2 | summo.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | summo.3 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) | |
| 4 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( ℤ≥ ‘ 𝑚 ) = ( ℤ≥ ‘ 𝑛 ) ) | |
| 5 | 4 | sseq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ↔ 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ) ) |
| 6 | seqeq1 | ⊢ ( 𝑚 = 𝑛 → seq 𝑚 ( + , 𝐹 ) = seq 𝑛 ( + , 𝐹 ) ) | |
| 7 | 6 | breq1d | ⊢ ( 𝑚 = 𝑛 → ( seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ↔ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) |
| 8 | 5 7 | anbi12d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) |
| 9 | 8 | cbvrexvw | ⊢ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ↔ ∃ 𝑛 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) |
| 10 | reeanv | ⊢ ( ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑛 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) | |
| 11 | simprlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) | |
| 12 | 2 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 13 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → 𝑚 ∈ ℤ ) | |
| 14 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → 𝑛 ∈ ℤ ) | |
| 15 | simprll | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ) | |
| 16 | simprrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ) | |
| 17 | 1 12 13 14 15 16 | sumrb | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → ( seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ↔ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑥 ) ) |
| 18 | 11 17 | mpbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → seq 𝑛 ( + , 𝐹 ) ⇝ 𝑥 ) |
| 19 | simprrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) | |
| 20 | climuni | ⊢ ( ( seq 𝑛 ( + , 𝐹 ) ⇝ 𝑥 ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) → 𝑥 = 𝑦 ) | |
| 21 | 18 19 20 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) ∧ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) → 𝑥 = 𝑦 ) |
| 22 | 21 | exp31 | ⊢ ( 𝜑 → ( ( 𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) → 𝑥 = 𝑦 ) ) ) |
| 23 | 22 | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 24 | 10 23 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∧ ∃ 𝑛 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) ) → 𝑥 = 𝑦 ) ) |
| 25 | 24 | expdimp | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑛 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑛 ) ∧ seq 𝑛 ( + , 𝐹 ) ⇝ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 26 | 9 25 | biimtrid | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 27 | 1 2 3 | summolem2 | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
| 28 | 26 27 | jaod | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑦 ) ) |
| 29 | 1 2 3 | summolem2 | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑦 = 𝑥 ) ) |
| 30 | equcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
| 31 | 29 30 | imbitrdi | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
| 32 | 31 | impancom | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 33 | oveq2 | ⊢ ( 𝑚 = 𝑛 → ( 1 ... 𝑚 ) = ( 1 ... 𝑛 ) ) | |
| 34 | 33 | f1oeq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ↔ 𝑓 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) |
| 35 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) | |
| 36 | 35 | eqeq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ↔ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) ) |
| 37 | 34 36 | anbi12d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) |
| 38 | 37 | exbidv | ⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) |
| 39 | f1oeq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ↔ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) | |
| 40 | fveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑛 ) ) | |
| 41 | 40 | csbeq1d | ⊢ ( 𝑓 = 𝑔 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) |
| 42 | 41 | mpteq2dv | ⊢ ( 𝑓 = 𝑔 → ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) |
| 43 | 3 42 | eqtrid | ⊢ ( 𝑓 = 𝑔 → 𝐺 = ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) |
| 44 | 43 | seqeq3d | ⊢ ( 𝑓 = 𝑔 → seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ) |
| 45 | 44 | fveq1d | ⊢ ( 𝑓 = 𝑔 → ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) |
| 46 | 45 | eqeq2d | ⊢ ( 𝑓 = 𝑔 → ( 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ↔ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) |
| 47 | 39 46 | anbi12d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) ↔ ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ) |
| 48 | 47 | cbvexvw | ⊢ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑛 ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) |
| 49 | 38 48 | bitrdi | ⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ) |
| 50 | 49 | cbvrexvw | ⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) |
| 51 | reeanv | ⊢ ( ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ↔ ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑛 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ) | |
| 52 | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ) | |
| 53 | an4 | ⊢ ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ↔ ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ∧ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) ) | |
| 54 | 2 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 55 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑗 ) ) | |
| 56 | 55 | csbeq1d | ⊢ ( 𝑛 = 𝑗 → ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
| 57 | 56 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
| 58 | 3 57 | eqtri | ⊢ 𝐺 = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑓 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
| 59 | fveq2 | ⊢ ( 𝑛 = 𝑗 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑗 ) ) | |
| 60 | 59 | csbeq1d | ⊢ ( 𝑛 = 𝑗 → ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 = ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
| 61 | 60 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) = ( 𝑗 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑗 ) / 𝑘 ⦌ 𝐵 ) |
| 62 | simplr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) → ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) | |
| 63 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ) | |
| 64 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) → 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) | |
| 65 | 1 54 58 61 62 63 64 | summolem3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) → ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) |
| 66 | eqeq12 | ⊢ ( ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) → ( 𝑥 = 𝑦 ↔ ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) | |
| 67 | 65 66 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) ∧ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) → 𝑥 = 𝑦 ) ) |
| 68 | 67 | expimpd | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ) ∧ ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) → 𝑥 = 𝑦 ) ) |
| 69 | 53 68 | biimtrid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) → 𝑥 = 𝑦 ) ) |
| 70 | 69 | exlimdvv | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) → 𝑥 = 𝑦 ) ) |
| 71 | 52 70 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑛 ∈ ℕ ) ) → ( ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) → 𝑥 = 𝑦 ) ) |
| 72 | 71 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑛 ∈ ℕ ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) → 𝑥 = 𝑦 ) ) |
| 73 | 51 72 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ∧ ∃ 𝑛 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) ) → 𝑥 = 𝑦 ) ) |
| 74 | 73 | expdimp | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ⦋ ( 𝑔 ‘ 𝑛 ) / 𝑘 ⦌ 𝐵 ) ) ‘ 𝑛 ) ) → 𝑥 = 𝑦 ) ) |
| 75 | 50 74 | biimtrid | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) → 𝑥 = 𝑦 ) ) |
| 76 | 32 75 | jaod | ⊢ ( ( 𝜑 ∧ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑦 ) ) |
| 77 | 28 76 | jaodan | ⊢ ( ( 𝜑 ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) → 𝑥 = 𝑦 ) ) |
| 78 | 77 | expimpd | ⊢ ( 𝜑 → ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 79 | 78 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 80 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ↔ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ) | |
| 81 | 80 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ↔ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) |
| 82 | 81 | rexbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ↔ ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ) ) |
| 83 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ↔ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) | |
| 84 | 83 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 85 | 84 | exbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 86 | 85 | rexbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) |
| 87 | 82 86 | orbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ↔ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) ) |
| 88 | 87 | mo4 | ⊢ ( ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ∧ ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑦 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑦 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 89 | 79 88 | sylibr | ⊢ ( 𝜑 → ∃* 𝑥 ( ∃ 𝑚 ∈ ℤ ( 𝐴 ⊆ ( ℤ≥ ‘ 𝑚 ) ∧ seq 𝑚 ( + , 𝐹 ) ⇝ 𝑥 ) ∨ ∃ 𝑚 ∈ ℕ ∃ 𝑓 ( 𝑓 : ( 1 ... 𝑚 ) –1-1-onto→ 𝐴 ∧ 𝑥 = ( seq 1 ( + , 𝐺 ) ‘ 𝑚 ) ) ) ) |