This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subumgredg2.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| subumgredg2.i | ⊢ 𝐼 = ( iEdg ‘ 𝑆 ) | ||
| Assertion | subumgredg2 | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subumgredg2.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| 2 | subumgredg2.i | ⊢ 𝐼 = ( iEdg ‘ 𝑆 ) | |
| 3 | fveqeq2 | ⊢ ( 𝑒 = ( 𝐼 ‘ 𝑋 ) → ( ( ♯ ‘ 𝑒 ) = 2 ↔ ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) = 2 ) ) | |
| 4 | umgruhgr | ⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) | |
| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝐺 ∈ UHGraph ) |
| 6 | simp1 | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝑆 SubGraph 𝐺 ) | |
| 7 | simp3 | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝑋 ∈ dom 𝐼 ) | |
| 8 | 1 2 5 6 7 | subgruhgredgd | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 9 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 10 | 9 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 11 | 4 10 | syl | ⊢ ( 𝐺 ∈ UMGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 13 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 14 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 15 | eqid | ⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) | |
| 16 | 13 14 2 9 15 | subgrprop2 | ⊢ ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 17 | 16 | simp2d | ⊢ ( 𝑆 SubGraph 𝐺 → 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ) |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ) |
| 19 | funssfv | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) = ( 𝐼 ‘ 𝑋 ) ) | |
| 20 | 19 | eqcomd | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 21 | 12 18 7 20 | syl3anc | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) = ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) ) |
| 23 | simp2 | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝐺 ∈ UMGraph ) | |
| 24 | 2 | dmeqi | ⊢ dom 𝐼 = dom ( iEdg ‘ 𝑆 ) |
| 25 | 24 | eleq2i | ⊢ ( 𝑋 ∈ dom 𝐼 ↔ 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) |
| 26 | subgreldmiedg | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 27 | 26 | ex | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 28 | 25 27 | biimtrid | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 29 | 28 | a1d | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝐺 ∈ UMGraph → ( 𝑋 ∈ dom 𝐼 → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) ) ) |
| 30 | 29 | 3imp | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 31 | 14 9 | umgredg2 | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) = 2 ) |
| 32 | 23 30 31 | syl2anc | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( ♯ ‘ ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) = 2 ) |
| 33 | 22 32 | eqtrd | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( ♯ ‘ ( 𝐼 ‘ 𝑋 ) ) = 2 ) |
| 34 | 3 8 33 | elrabd | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ∈ { 𝑒 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 35 | prprrab | ⊢ { 𝑒 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑒 ) = 2 } = { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } | |
| 36 | 34 35 | eleqtrdi | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ∈ { 𝑒 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |