This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subgreldmiedg | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) | |
| 6 | 1 2 3 4 5 | subgrprop2 | ⊢ ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 7 | dmss | ⊢ ( ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) → dom ( iEdg ‘ 𝑆 ) ⊆ dom ( iEdg ‘ 𝐺 ) ) | |
| 8 | 7 | 3ad2ant2 | ⊢ ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → dom ( iEdg ‘ 𝑆 ) ⊆ dom ( iEdg ‘ 𝐺 ) ) |
| 9 | 8 | sseld | ⊢ ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → ( 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 10 | 6 9 | syl | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) ) |
| 11 | 10 | imp | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) |