This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgraph of a hypergraph is a hypergraph. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 21-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subuhgr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) | |
| 6 | 1 2 3 4 5 | subgrprop2 | ⊢ ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 7 | subgruhgrfun | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) | |
| 8 | 7 | ancoms | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) → Fun ( iEdg ‘ 𝑆 ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → Fun ( iEdg ‘ 𝑆 ) ) |
| 10 | 9 | funfnd | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ) |
| 11 | simplrr | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝐺 ∈ UHGraph ) | |
| 12 | simplrl | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑆 SubGraph 𝐺 ) | |
| 13 | simpr | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) | |
| 14 | 1 3 11 12 13 | subgruhgredgd | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) |
| 15 | 14 | ralrimiva | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) |
| 16 | fnfvrnss | ⊢ ( ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) → ran ( iEdg ‘ 𝑆 ) ⊆ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) | |
| 17 | 10 15 16 | syl2anc | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → ran ( iEdg ‘ 𝑆 ) ⊆ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) |
| 18 | df-f | ⊢ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ↔ ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ran ( iEdg ‘ 𝑆 ) ⊆ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) | |
| 19 | 10 17 18 | sylanbrc | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) |
| 20 | subgrv | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) ) | |
| 21 | 1 3 | isuhgr | ⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
| 23 | 20 22 | syl | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → ( 𝑆 ∈ UHGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ ( 𝒫 ( Vtx ‘ 𝑆 ) ∖ { ∅ } ) ) ) |
| 26 | 19 25 | mpbird | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) ) → 𝑆 ∈ UHGraph ) |
| 27 | 26 | ex | ⊢ ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) → 𝑆 ∈ UHGraph ) ) |
| 28 | 6 27 | syl | ⊢ ( 𝑆 SubGraph 𝐺 → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UHGraph ) → 𝑆 ∈ UHGraph ) ) |
| 29 | 28 | anabsi8 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ UHGraph ) |