This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of proper pairs of elements of a given set expressed in two ways. (Contributed by AV, 24-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prprrab | ⊢ { 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 2 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ne0 | ⊢ 2 ≠ 0 | |
| 2 | 1 | neii | ⊢ ¬ 2 = 0 |
| 3 | eqeq1 | ⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( ( ♯ ‘ 𝑥 ) = 0 ↔ 2 = 0 ) ) | |
| 4 | 2 3 | mtbiri | ⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ¬ ( ♯ ‘ 𝑥 ) = 0 ) |
| 5 | hasheq0 | ⊢ ( 𝑥 ∈ V → ( ( ♯ ‘ 𝑥 ) = 0 ↔ 𝑥 = ∅ ) ) | |
| 6 | 5 | bicomd | ⊢ ( 𝑥 ∈ V → ( 𝑥 = ∅ ↔ ( ♯ ‘ 𝑥 ) = 0 ) ) |
| 7 | 6 | necon3abid | ⊢ ( 𝑥 ∈ V → ( 𝑥 ≠ ∅ ↔ ¬ ( ♯ ‘ 𝑥 ) = 0 ) ) |
| 8 | 7 | elv | ⊢ ( 𝑥 ≠ ∅ ↔ ¬ ( ♯ ‘ 𝑥 ) = 0 ) |
| 9 | 4 8 | sylibr | ⊢ ( ( ♯ ‘ 𝑥 ) = 2 → 𝑥 ≠ ∅ ) |
| 10 | 9 | biantrud | ⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( 𝑥 ∈ 𝒫 𝐴 ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅ ) ) ) |
| 11 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ ∅ ) ) | |
| 12 | 10 11 | bitr4di | ⊢ ( ( ♯ ‘ 𝑥 ) = 2 → ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) ) |
| 13 | 12 | pm5.32ri | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 2 ) ↔ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑥 ) = 2 ) ) |
| 14 | 13 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 2 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑥 ) = 2 ) } |
| 15 | df-rab | ⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∣ ( 𝑥 ∈ 𝒫 𝐴 ∧ ( ♯ ‘ 𝑥 ) = 2 ) } | |
| 16 | df-rab | ⊢ { 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∣ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( ♯ ‘ 𝑥 ) = 2 ) } | |
| 17 | 14 15 16 | 3eqtr4ri | ⊢ { 𝑥 ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) = 2 } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( ♯ ‘ 𝑥 ) = 2 } |