This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a subgraph of a multigraph connects exactly two different vertices. (Contributed by AV, 26-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subumgredg2.v | |- V = ( Vtx ` S ) |
|
| subumgredg2.i | |- I = ( iEdg ` S ) |
||
| Assertion | subumgredg2 | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> ( I ` X ) e. { e e. ~P V | ( # ` e ) = 2 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subumgredg2.v | |- V = ( Vtx ` S ) |
|
| 2 | subumgredg2.i | |- I = ( iEdg ` S ) |
|
| 3 | fveqeq2 | |- ( e = ( I ` X ) -> ( ( # ` e ) = 2 <-> ( # ` ( I ` X ) ) = 2 ) ) |
|
| 4 | umgruhgr | |- ( G e. UMGraph -> G e. UHGraph ) |
|
| 5 | 4 | 3ad2ant2 | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> G e. UHGraph ) |
| 6 | simp1 | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> S SubGraph G ) |
|
| 7 | simp3 | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> X e. dom I ) |
|
| 8 | 1 2 5 6 7 | subgruhgredgd | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> ( I ` X ) e. ( ~P V \ { (/) } ) ) |
| 9 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 10 | 9 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
| 11 | 4 10 | syl | |- ( G e. UMGraph -> Fun ( iEdg ` G ) ) |
| 12 | 11 | 3ad2ant2 | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> Fun ( iEdg ` G ) ) |
| 13 | eqid | |- ( Vtx ` S ) = ( Vtx ` S ) |
|
| 14 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 15 | eqid | |- ( Edg ` S ) = ( Edg ` S ) |
|
| 16 | 13 14 2 9 15 | subgrprop2 | |- ( S SubGraph G -> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ I C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
| 17 | 16 | simp2d | |- ( S SubGraph G -> I C_ ( iEdg ` G ) ) |
| 18 | 17 | 3ad2ant1 | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> I C_ ( iEdg ` G ) ) |
| 19 | funssfv | |- ( ( Fun ( iEdg ` G ) /\ I C_ ( iEdg ` G ) /\ X e. dom I ) -> ( ( iEdg ` G ) ` X ) = ( I ` X ) ) |
|
| 20 | 19 | eqcomd | |- ( ( Fun ( iEdg ` G ) /\ I C_ ( iEdg ` G ) /\ X e. dom I ) -> ( I ` X ) = ( ( iEdg ` G ) ` X ) ) |
| 21 | 12 18 7 20 | syl3anc | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> ( I ` X ) = ( ( iEdg ` G ) ` X ) ) |
| 22 | 21 | fveq2d | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> ( # ` ( I ` X ) ) = ( # ` ( ( iEdg ` G ) ` X ) ) ) |
| 23 | simp2 | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> G e. UMGraph ) |
|
| 24 | 2 | dmeqi | |- dom I = dom ( iEdg ` S ) |
| 25 | 24 | eleq2i | |- ( X e. dom I <-> X e. dom ( iEdg ` S ) ) |
| 26 | subgreldmiedg | |- ( ( S SubGraph G /\ X e. dom ( iEdg ` S ) ) -> X e. dom ( iEdg ` G ) ) |
|
| 27 | 26 | ex | |- ( S SubGraph G -> ( X e. dom ( iEdg ` S ) -> X e. dom ( iEdg ` G ) ) ) |
| 28 | 25 27 | biimtrid | |- ( S SubGraph G -> ( X e. dom I -> X e. dom ( iEdg ` G ) ) ) |
| 29 | 28 | a1d | |- ( S SubGraph G -> ( G e. UMGraph -> ( X e. dom I -> X e. dom ( iEdg ` G ) ) ) ) |
| 30 | 29 | 3imp | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> X e. dom ( iEdg ` G ) ) |
| 31 | 14 9 | umgredg2 | |- ( ( G e. UMGraph /\ X e. dom ( iEdg ` G ) ) -> ( # ` ( ( iEdg ` G ) ` X ) ) = 2 ) |
| 32 | 23 30 31 | syl2anc | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> ( # ` ( ( iEdg ` G ) ` X ) ) = 2 ) |
| 33 | 22 32 | eqtrd | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> ( # ` ( I ` X ) ) = 2 ) |
| 34 | 3 8 33 | elrabd | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> ( I ` X ) e. { e e. ( ~P V \ { (/) } ) | ( # ` e ) = 2 } ) |
| 35 | prprrab | |- { e e. ( ~P V \ { (/) } ) | ( # ` e ) = 2 } = { e e. ~P V | ( # ` e ) = 2 } |
|
| 36 | 34 35 | eleqtrdi | |- ( ( S SubGraph G /\ G e. UMGraph /\ X e. dom I ) -> ( I ` X ) e. { e e. ~P V | ( # ` e ) = 2 } ) |