This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a multigraph has exactly two ends. (Contributed by AV, 24-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isumgr.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | umgredg2 | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isumgr.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | 1 2 | umgrf | ⊢ ( 𝐺 ∈ UMGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 4 | 3 | ffvelcdmda | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 5 | fveqeq2 | ⊢ ( 𝑥 = ( 𝐸 ‘ 𝑋 ) → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) ) | |
| 6 | 5 | elrab | ⊢ ( ( 𝐸 ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( ( 𝐸 ‘ 𝑋 ) ∈ 𝒫 𝑉 ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) ) |
| 7 | 6 | simprbi | ⊢ ( ( 𝐸 ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) |
| 8 | 4 7 | syl | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) |