This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a subgraph of a hypergraph is a nonempty subset of its vertices. (Contributed by AV, 17-Nov-2020) (Revised by AV, 21-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgruhgredgd.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| subgruhgredgd.i | ⊢ 𝐼 = ( iEdg ‘ 𝑆 ) | ||
| subgruhgredgd.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | ||
| subgruhgredgd.s | ⊢ ( 𝜑 → 𝑆 SubGraph 𝐺 ) | ||
| subgruhgredgd.x | ⊢ ( 𝜑 → 𝑋 ∈ dom 𝐼 ) | ||
| Assertion | subgruhgredgd | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgruhgredgd.v | ⊢ 𝑉 = ( Vtx ‘ 𝑆 ) | |
| 2 | subgruhgredgd.i | ⊢ 𝐼 = ( iEdg ‘ 𝑆 ) | |
| 3 | subgruhgredgd.g | ⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) | |
| 4 | subgruhgredgd.s | ⊢ ( 𝜑 → 𝑆 SubGraph 𝐺 ) | |
| 5 | subgruhgredgd.x | ⊢ ( 𝜑 → 𝑋 ∈ dom 𝐼 ) | |
| 6 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) | |
| 9 | 1 6 2 7 8 | subgrprop2 | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) |
| 11 | simpr3 | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) | |
| 12 | subgruhgrfun | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) | |
| 13 | 3 4 12 | syl2anc | ⊢ ( 𝜑 → Fun ( iEdg ‘ 𝑆 ) ) |
| 14 | 2 | dmeqi | ⊢ dom 𝐼 = dom ( iEdg ‘ 𝑆 ) |
| 15 | 5 14 | eleqtrdi | ⊢ ( 𝜑 → 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) |
| 16 | 13 15 | jca | ⊢ ( 𝜑 → ( Fun ( iEdg ‘ 𝑆 ) ∧ 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → ( Fun ( iEdg ‘ 𝑆 ) ∧ 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) ) |
| 18 | 2 | fveq1i | ⊢ ( 𝐼 ‘ 𝑋 ) = ( ( iEdg ‘ 𝑆 ) ‘ 𝑋 ) |
| 19 | fvelrn | ⊢ ( ( Fun ( iEdg ‘ 𝑆 ) ∧ 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑋 ) ∈ ran ( iEdg ‘ 𝑆 ) ) | |
| 20 | 18 19 | eqeltrid | ⊢ ( ( Fun ( iEdg ‘ 𝑆 ) ∧ 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ran ( iEdg ‘ 𝑆 ) ) |
| 21 | 17 20 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ran ( iEdg ‘ 𝑆 ) ) |
| 22 | edgval | ⊢ ( Edg ‘ 𝑆 ) = ran ( iEdg ‘ 𝑆 ) | |
| 23 | 21 22 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Edg ‘ 𝑆 ) ) |
| 24 | 11 23 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝒫 𝑉 ) |
| 25 | 7 | uhgrfun | ⊢ ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) ) |
| 26 | 3 25 | syl | ⊢ ( 𝜑 → Fun ( iEdg ‘ 𝐺 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → Fun ( iEdg ‘ 𝐺 ) ) |
| 28 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ) | |
| 29 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → 𝑋 ∈ dom 𝐼 ) |
| 30 | funssfv | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) = ( 𝐼 ‘ 𝑋 ) ) | |
| 31 | 30 | eqcomd | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 32 | 27 28 29 31 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → ( 𝐼 ‘ 𝑋 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ) |
| 33 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → 𝐺 ∈ UHGraph ) |
| 34 | 26 | funfnd | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ) |
| 36 | subgreldmiedg | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) | |
| 37 | 4 15 36 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) |
| 39 | 7 | uhgrn0 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( iEdg ‘ 𝐺 ) Fn dom ( iEdg ‘ 𝐺 ) ∧ 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ≠ ∅ ) |
| 40 | 33 35 38 39 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑋 ) ≠ ∅ ) |
| 41 | 32 40 | eqnetrd | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → ( 𝐼 ‘ 𝑋 ) ≠ ∅ ) |
| 42 | eldifsn | ⊢ ( ( 𝐼 ‘ 𝑋 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ↔ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝒫 𝑉 ∧ ( 𝐼 ‘ 𝑋 ) ≠ ∅ ) ) | |
| 43 | 24 41 42 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑉 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝐼 ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 𝑉 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 44 | 10 43 | mpdan | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ) |