This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subgint | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intssuni | ⊢ ( 𝑆 ≠ ∅ → ∩ 𝑆 ⊆ ∪ 𝑆 ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ⊆ ∪ 𝑆 ) |
| 3 | ssel2 | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | 3 | adantlr | ⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 6 | 5 | subgss | ⊢ ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) → 𝑔 ⊆ ( Base ‘ 𝐺 ) ) |
| 7 | 4 6 | syl | ⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 ⊆ ( Base ‘ 𝐺 ) ) |
| 8 | 7 | ralrimiva | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∀ 𝑔 ∈ 𝑆 𝑔 ⊆ ( Base ‘ 𝐺 ) ) |
| 9 | unissb | ⊢ ( ∪ 𝑆 ⊆ ( Base ‘ 𝐺 ) ↔ ∀ 𝑔 ∈ 𝑆 𝑔 ⊆ ( Base ‘ 𝐺 ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∪ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 11 | 2 10 | sstrd | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 12 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 13 | 12 | subg0cl | ⊢ ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑔 ) |
| 14 | 4 13 | syl | ⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑔 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ 𝑔 ) |
| 15 | 14 | ralrimiva | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∀ 𝑔 ∈ 𝑆 ( 0g ‘ 𝐺 ) ∈ 𝑔 ) |
| 16 | fvex | ⊢ ( 0g ‘ 𝐺 ) ∈ V | |
| 17 | 16 | elint2 | ⊢ ( ( 0g ‘ 𝐺 ) ∈ ∩ 𝑆 ↔ ∀ 𝑔 ∈ 𝑆 ( 0g ‘ 𝐺 ) ∈ 𝑔 ) |
| 18 | 15 17 | sylibr | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ( 0g ‘ 𝐺 ) ∈ ∩ 𝑆 ) |
| 19 | 18 | ne0d | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ≠ ∅ ) |
| 20 | 4 | adantlr | ⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 21 | simprl | ⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → 𝑥 ∈ ∩ 𝑆 ) | |
| 22 | elinti | ⊢ ( 𝑥 ∈ ∩ 𝑆 → ( 𝑔 ∈ 𝑆 → 𝑥 ∈ 𝑔 ) ) | |
| 23 | 22 | imp | ⊢ ( ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑔 ∈ 𝑆 ) → 𝑥 ∈ 𝑔 ) |
| 24 | 21 23 | sylan | ⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑔 ∈ 𝑆 ) → 𝑥 ∈ 𝑔 ) |
| 25 | simprr | ⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → 𝑦 ∈ ∩ 𝑆 ) | |
| 26 | elinti | ⊢ ( 𝑦 ∈ ∩ 𝑆 → ( 𝑔 ∈ 𝑆 → 𝑦 ∈ 𝑔 ) ) | |
| 27 | 26 | imp | ⊢ ( ( 𝑦 ∈ ∩ 𝑆 ∧ 𝑔 ∈ 𝑆 ) → 𝑦 ∈ 𝑔 ) |
| 28 | 25 27 | sylan | ⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑔 ∈ 𝑆 ) → 𝑦 ∈ 𝑔 ) |
| 29 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 30 | 29 | subgcl | ⊢ ( ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑔 ∧ 𝑦 ∈ 𝑔 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑔 ) |
| 31 | 20 24 28 30 | syl3anc | ⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) ∧ 𝑔 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑔 ) |
| 32 | 31 | ralrimiva | ⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → ∀ 𝑔 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑔 ) |
| 33 | ovex | ⊢ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ V | |
| 34 | 33 | elint2 | ⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ↔ ∀ 𝑔 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑔 ) |
| 35 | 32 34 | sylibr | ⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ ( 𝑥 ∈ ∩ 𝑆 ∧ 𝑦 ∈ ∩ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ) |
| 36 | 35 | anassrs | ⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) ∧ 𝑦 ∈ ∩ 𝑆 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ) |
| 37 | 36 | ralrimiva | ⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) → ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ) |
| 38 | 4 | adantlr | ⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) ∧ 𝑔 ∈ 𝑆 ) → 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 39 | 23 | adantll | ⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) ∧ 𝑔 ∈ 𝑆 ) → 𝑥 ∈ 𝑔 ) |
| 40 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 41 | 40 | subginvcl | ⊢ ( ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑔 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑔 ) |
| 42 | 38 39 41 | syl2anc | ⊢ ( ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) ∧ 𝑔 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑔 ) |
| 43 | 42 | ralrimiva | ⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) → ∀ 𝑔 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑔 ) |
| 44 | fvex | ⊢ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ V | |
| 45 | 44 | elint2 | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ∩ 𝑆 ↔ ∀ 𝑔 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑔 ) |
| 46 | 43 45 | sylibr | ⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ∩ 𝑆 ) |
| 47 | 37 46 | jca | ⊢ ( ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) ∧ 𝑥 ∈ ∩ 𝑆 ) → ( ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ∩ 𝑆 ) ) |
| 48 | 47 | ralrimiva | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∀ 𝑥 ∈ ∩ 𝑆 ( ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ∩ 𝑆 ) ) |
| 49 | ssn0 | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ( SubGrp ‘ 𝐺 ) ≠ ∅ ) | |
| 50 | n0 | ⊢ ( ( SubGrp ‘ 𝐺 ) ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 51 | subgrcl | ⊢ ( 𝑔 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 52 | 51 | exlimiv | ⊢ ( ∃ 𝑔 𝑔 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 53 | 50 52 | sylbi | ⊢ ( ( SubGrp ‘ 𝐺 ) ≠ ∅ → 𝐺 ∈ Grp ) |
| 54 | 5 29 40 | issubg2 | ⊢ ( 𝐺 ∈ Grp → ( ∩ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ∩ 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ∩ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ ∩ 𝑆 ( ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ∩ 𝑆 ) ) ) ) |
| 55 | 49 53 54 | 3syl | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ( ∩ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ∩ 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ ∩ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ ∩ 𝑆 ( ∀ 𝑦 ∈ ∩ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ∩ 𝑆 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ ∩ 𝑆 ) ) ) ) |
| 56 | 11 19 48 55 | mpbir3and | ⊢ ( ( 𝑆 ⊆ ( SubGrp ‘ 𝐺 ) ∧ 𝑆 ≠ ∅ ) → ∩ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |