This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subgint | |- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intssuni | |- ( S =/= (/) -> |^| S C_ U. S ) |
|
| 2 | 1 | adantl | |- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S C_ U. S ) |
| 3 | ssel2 | |- ( ( S C_ ( SubGrp ` G ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) |
|
| 4 | 3 | adantlr | |- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) |
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 6 | 5 | subgss | |- ( g e. ( SubGrp ` G ) -> g C_ ( Base ` G ) ) |
| 7 | 4 6 | syl | |- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ g e. S ) -> g C_ ( Base ` G ) ) |
| 8 | 7 | ralrimiva | |- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> A. g e. S g C_ ( Base ` G ) ) |
| 9 | unissb | |- ( U. S C_ ( Base ` G ) <-> A. g e. S g C_ ( Base ` G ) ) |
|
| 10 | 8 9 | sylibr | |- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> U. S C_ ( Base ` G ) ) |
| 11 | 2 10 | sstrd | |- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S C_ ( Base ` G ) ) |
| 12 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 13 | 12 | subg0cl | |- ( g e. ( SubGrp ` G ) -> ( 0g ` G ) e. g ) |
| 14 | 4 13 | syl | |- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ g e. S ) -> ( 0g ` G ) e. g ) |
| 15 | 14 | ralrimiva | |- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> A. g e. S ( 0g ` G ) e. g ) |
| 16 | fvex | |- ( 0g ` G ) e. _V |
|
| 17 | 16 | elint2 | |- ( ( 0g ` G ) e. |^| S <-> A. g e. S ( 0g ` G ) e. g ) |
| 18 | 15 17 | sylibr | |- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> ( 0g ` G ) e. |^| S ) |
| 19 | 18 | ne0d | |- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S =/= (/) ) |
| 20 | 4 | adantlr | |- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) |
| 21 | simprl | |- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> x e. |^| S ) |
|
| 22 | elinti | |- ( x e. |^| S -> ( g e. S -> x e. g ) ) |
|
| 23 | 22 | imp | |- ( ( x e. |^| S /\ g e. S ) -> x e. g ) |
| 24 | 21 23 | sylan | |- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> x e. g ) |
| 25 | simprr | |- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> y e. |^| S ) |
|
| 26 | elinti | |- ( y e. |^| S -> ( g e. S -> y e. g ) ) |
|
| 27 | 26 | imp | |- ( ( y e. |^| S /\ g e. S ) -> y e. g ) |
| 28 | 25 27 | sylan | |- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> y e. g ) |
| 29 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 30 | 29 | subgcl | |- ( ( g e. ( SubGrp ` G ) /\ x e. g /\ y e. g ) -> ( x ( +g ` G ) y ) e. g ) |
| 31 | 20 24 28 30 | syl3anc | |- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) /\ g e. S ) -> ( x ( +g ` G ) y ) e. g ) |
| 32 | 31 | ralrimiva | |- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> A. g e. S ( x ( +g ` G ) y ) e. g ) |
| 33 | ovex | |- ( x ( +g ` G ) y ) e. _V |
|
| 34 | 33 | elint2 | |- ( ( x ( +g ` G ) y ) e. |^| S <-> A. g e. S ( x ( +g ` G ) y ) e. g ) |
| 35 | 32 34 | sylibr | |- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ ( x e. |^| S /\ y e. |^| S ) ) -> ( x ( +g ` G ) y ) e. |^| S ) |
| 36 | 35 | anassrs | |- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ y e. |^| S ) -> ( x ( +g ` G ) y ) e. |^| S ) |
| 37 | 36 | ralrimiva | |- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S ) |
| 38 | 4 | adantlr | |- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ g e. S ) -> g e. ( SubGrp ` G ) ) |
| 39 | 23 | adantll | |- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ g e. S ) -> x e. g ) |
| 40 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 41 | 40 | subginvcl | |- ( ( g e. ( SubGrp ` G ) /\ x e. g ) -> ( ( invg ` G ) ` x ) e. g ) |
| 42 | 38 39 41 | syl2anc | |- ( ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) /\ g e. S ) -> ( ( invg ` G ) ` x ) e. g ) |
| 43 | 42 | ralrimiva | |- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> A. g e. S ( ( invg ` G ) ` x ) e. g ) |
| 44 | fvex | |- ( ( invg ` G ) ` x ) e. _V |
|
| 45 | 44 | elint2 | |- ( ( ( invg ` G ) ` x ) e. |^| S <-> A. g e. S ( ( invg ` G ) ` x ) e. g ) |
| 46 | 43 45 | sylibr | |- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> ( ( invg ` G ) ` x ) e. |^| S ) |
| 47 | 37 46 | jca | |- ( ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) /\ x e. |^| S ) -> ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) |
| 48 | 47 | ralrimiva | |- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> A. x e. |^| S ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) |
| 49 | ssn0 | |- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> ( SubGrp ` G ) =/= (/) ) |
|
| 50 | n0 | |- ( ( SubGrp ` G ) =/= (/) <-> E. g g e. ( SubGrp ` G ) ) |
|
| 51 | subgrcl | |- ( g e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 52 | 51 | exlimiv | |- ( E. g g e. ( SubGrp ` G ) -> G e. Grp ) |
| 53 | 50 52 | sylbi | |- ( ( SubGrp ` G ) =/= (/) -> G e. Grp ) |
| 54 | 5 29 40 | issubg2 | |- ( G e. Grp -> ( |^| S e. ( SubGrp ` G ) <-> ( |^| S C_ ( Base ` G ) /\ |^| S =/= (/) /\ A. x e. |^| S ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) ) ) |
| 55 | 49 53 54 | 3syl | |- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> ( |^| S e. ( SubGrp ` G ) <-> ( |^| S C_ ( Base ` G ) /\ |^| S =/= (/) /\ A. x e. |^| S ( A. y e. |^| S ( x ( +g ` G ) y ) e. |^| S /\ ( ( invg ` G ) ` x ) e. |^| S ) ) ) ) |
| 56 | 11 19 48 55 | mpbir3and | |- ( ( S C_ ( SubGrp ` G ) /\ S =/= (/) ) -> |^| S e. ( SubGrp ` G ) ) |