This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcategory is a category. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subccat.1 | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) | |
| subccat.j | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | ||
| subccatid.1 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) | ||
| subccatid.2 | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| Assertion | subccatid | ⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ ( Id ‘ 𝐷 ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subccat.1 | ⊢ 𝐷 = ( 𝐶 ↾cat 𝐽 ) | |
| 2 | subccat.j | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| 3 | subccatid.1 | ⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) | |
| 4 | subccatid.2 | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 6 | subcrcl | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐶 ∈ Cat ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 8 | 2 3 5 | subcss1 | ⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝐶 ) ) |
| 9 | 1 5 7 3 8 | rescbas | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ 𝐷 ) ) |
| 10 | 1 5 7 3 8 | reschom | ⊢ ( 𝜑 → 𝐽 = ( Hom ‘ 𝐷 ) ) |
| 11 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 12 | 1 5 7 3 8 11 | rescco | ⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ 𝐷 ) ) |
| 13 | 1 | ovexi | ⊢ 𝐷 ∈ V |
| 14 | 13 | a1i | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 15 | biid | ⊢ ( ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ↔ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) | |
| 16 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
| 17 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| 18 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) | |
| 19 | 16 17 18 4 | subcidcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 1 ‘ 𝑥 ) ∈ ( 𝑥 𝐽 𝑥 ) ) |
| 20 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 21 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝐶 ∈ Cat ) |
| 22 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑆 ⊆ ( Base ‘ 𝐶 ) ) |
| 23 | simpr1l | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑤 ∈ 𝑆 ) | |
| 24 | 22 23 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
| 25 | simpr1r | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑥 ∈ 𝑆 ) | |
| 26 | 22 25 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 27 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
| 28 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| 29 | 27 28 20 23 25 | subcss2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( 𝑤 𝐽 𝑥 ) ⊆ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 30 | simpr31 | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ) | |
| 31 | 29 30 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑓 ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 32 | 5 20 4 21 24 11 26 31 | catlid | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( ( 1 ‘ 𝑥 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) |
| 33 | simpr2l | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑦 ∈ 𝑆 ) | |
| 34 | 22 33 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 35 | 27 28 20 25 33 | subcss2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( 𝑥 𝐽 𝑦 ) ⊆ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 36 | simpr32 | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ) | |
| 37 | 35 36 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 38 | 5 20 4 21 26 11 34 37 | catrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ( 1 ‘ 𝑥 ) ) = 𝑔 ) |
| 39 | 27 28 23 11 25 33 30 36 | subccocl | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ∈ ( 𝑤 𝐽 𝑦 ) ) |
| 40 | simpr2r | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑧 ∈ 𝑆 ) | |
| 41 | 22 40 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 42 | 27 28 20 33 40 | subcss2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( 𝑦 𝐽 𝑧 ) ⊆ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 43 | simpr33 | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) | |
| 44 | 42 43 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ℎ ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 45 | 5 20 11 21 24 26 34 31 37 41 44 | catass | ⊢ ( ( 𝜑 ∧ ( ( 𝑤 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ∧ ( 𝑓 ∈ ( 𝑤 𝐽 𝑥 ) ∧ 𝑔 ∈ ( 𝑥 𝐽 𝑦 ) ∧ ℎ ∈ ( 𝑦 𝐽 𝑧 ) ) ) ) → ( ( ℎ ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑔 ) ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) = ( ℎ ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑤 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑓 ) ) ) |
| 46 | 9 10 12 14 15 19 32 38 39 45 | iscatd2 | ⊢ ( 𝜑 → ( 𝐷 ∈ Cat ∧ ( Id ‘ 𝐷 ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 ‘ 𝑥 ) ) ) ) |