This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being sandwiched between two sets naturally splits under union with a singleton. This is the induction hypothesis for the determination of large powersets such as pwtp . (Contributed by Mario Carneiro, 2-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssunsn2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | ⊢ ( 𝐷 ∈ 𝐴 → { 𝐷 } ⊆ 𝐴 ) | |
| 2 | unss | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ { 𝐷 } ⊆ 𝐴 ) ↔ ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ) | |
| 3 | 2 | bicomi | ⊢ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 ∧ { 𝐷 } ⊆ 𝐴 ) ) |
| 4 | 3 | rbaibr | ⊢ ( { 𝐷 } ⊆ 𝐴 → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ) ) |
| 5 | 1 4 | syl | ⊢ ( 𝐷 ∈ 𝐴 → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ) ) |
| 6 | 5 | anbi1d | ⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) |
| 7 | 2 | biimpi | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ { 𝐷 } ⊆ 𝐴 ) → ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ) |
| 8 | 7 | expcom | ⊢ ( { 𝐷 } ⊆ 𝐴 → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ) ) |
| 9 | 1 8 | syl | ⊢ ( 𝐷 ∈ 𝐴 → ( 𝐵 ⊆ 𝐴 → ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ) ) |
| 10 | ssun3 | ⊢ ( 𝐴 ⊆ 𝐶 → 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) | |
| 11 | 10 | a1i | ⊢ ( 𝐷 ∈ 𝐴 → ( 𝐴 ⊆ 𝐶 → 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) |
| 12 | 9 11 | anim12d | ⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) → ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) |
| 13 | pm4.72 | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) → ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ↔ ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) ) | |
| 14 | 12 13 | sylib | ⊢ ( 𝐷 ∈ 𝐴 → ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) ) |
| 15 | 6 14 | bitrd | ⊢ ( 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) ) |
| 16 | uncom | ⊢ ( { 𝐷 } ∪ 𝐶 ) = ( 𝐶 ∪ { 𝐷 } ) | |
| 17 | 16 | sseq2i | ⊢ ( 𝐴 ⊆ ( { 𝐷 } ∪ 𝐶 ) ↔ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) |
| 18 | ssundif | ⊢ ( 𝐴 ⊆ ( { 𝐷 } ∪ 𝐶 ) ↔ ( 𝐴 ∖ { 𝐷 } ) ⊆ 𝐶 ) | |
| 19 | 17 18 | bitr3i | ⊢ ( 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ↔ ( 𝐴 ∖ { 𝐷 } ) ⊆ 𝐶 ) |
| 20 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝐷 } ) = ∅ ↔ ¬ 𝐷 ∈ 𝐴 ) | |
| 21 | disj3 | ⊢ ( ( 𝐴 ∩ { 𝐷 } ) = ∅ ↔ 𝐴 = ( 𝐴 ∖ { 𝐷 } ) ) | |
| 22 | 20 21 | bitr3i | ⊢ ( ¬ 𝐷 ∈ 𝐴 ↔ 𝐴 = ( 𝐴 ∖ { 𝐷 } ) ) |
| 23 | sseq1 | ⊢ ( 𝐴 = ( 𝐴 ∖ { 𝐷 } ) → ( 𝐴 ⊆ 𝐶 ↔ ( 𝐴 ∖ { 𝐷 } ) ⊆ 𝐶 ) ) | |
| 24 | 22 23 | sylbi | ⊢ ( ¬ 𝐷 ∈ 𝐴 → ( 𝐴 ⊆ 𝐶 ↔ ( 𝐴 ∖ { 𝐷 } ) ⊆ 𝐶 ) ) |
| 25 | 19 24 | bitr4id | ⊢ ( ¬ 𝐷 ∈ 𝐴 → ( 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ↔ 𝐴 ⊆ 𝐶 ) ) |
| 26 | 25 | anbi2d | ⊢ ( ¬ 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) ) |
| 27 | 3 | simplbi | ⊢ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 → 𝐵 ⊆ 𝐴 ) |
| 28 | 27 | a1i | ⊢ ( ¬ 𝐷 ∈ 𝐴 → ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 → 𝐵 ⊆ 𝐴 ) ) |
| 29 | 25 | biimpd | ⊢ ( ¬ 𝐷 ∈ 𝐴 → ( 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) → 𝐴 ⊆ 𝐶 ) ) |
| 30 | 28 29 | anim12d | ⊢ ( ¬ 𝐷 ∈ 𝐴 → ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) ) |
| 31 | pm4.72 | ⊢ ( ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ↔ ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ∨ ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) ) ) | |
| 32 | 30 31 | sylib | ⊢ ( ¬ 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ↔ ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ∨ ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) ) ) |
| 33 | orcom | ⊢ ( ( ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ∨ ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) | |
| 34 | 32 33 | bitrdi | ⊢ ( ¬ 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) ) |
| 35 | 26 34 | bitrd | ⊢ ( ¬ 𝐷 ∈ 𝐴 → ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) ) |
| 36 | 15 35 | pm2.61i | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐶 ) ∨ ( ( 𝐵 ∪ { 𝐷 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐶 ∪ { 𝐷 } ) ) ) ) |