This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication in terms of biconditional and disjunction. Theorem *4.72 of WhiteheadRussell p. 121. (Contributed by NM, 30-Aug-1993) (Proof shortened by Wolf Lammen, 30-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm4.72 | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc | ⊢ ( 𝜓 → ( 𝜑 ∨ 𝜓 ) ) | |
| 2 | pm2.621 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) ) | |
| 3 | 1 2 | impbid2 | ⊢ ( ( 𝜑 → 𝜓 ) → ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) ) |
| 4 | orc | ⊢ ( 𝜑 → ( 𝜑 ∨ 𝜓 ) ) | |
| 5 | biimpr | ⊢ ( ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) → ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) ) | |
| 6 | 4 5 | syl5 | ⊢ ( ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) |
| 7 | 3 6 | impbii | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) ) |