This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being sandwiched between two sets naturally splits under union with a singleton. This is the induction hypothesis for the determination of large powersets such as pwtp . (Contributed by Mario Carneiro, 2-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssunsn2 | |- ( ( B C_ A /\ A C_ ( C u. { D } ) ) <-> ( ( B C_ A /\ A C_ C ) \/ ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | |- ( D e. A -> { D } C_ A ) |
|
| 2 | unss | |- ( ( B C_ A /\ { D } C_ A ) <-> ( B u. { D } ) C_ A ) |
|
| 3 | 2 | bicomi | |- ( ( B u. { D } ) C_ A <-> ( B C_ A /\ { D } C_ A ) ) |
| 4 | 3 | rbaibr | |- ( { D } C_ A -> ( B C_ A <-> ( B u. { D } ) C_ A ) ) |
| 5 | 1 4 | syl | |- ( D e. A -> ( B C_ A <-> ( B u. { D } ) C_ A ) ) |
| 6 | 5 | anbi1d | |- ( D e. A -> ( ( B C_ A /\ A C_ ( C u. { D } ) ) <-> ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) ) ) |
| 7 | 2 | biimpi | |- ( ( B C_ A /\ { D } C_ A ) -> ( B u. { D } ) C_ A ) |
| 8 | 7 | expcom | |- ( { D } C_ A -> ( B C_ A -> ( B u. { D } ) C_ A ) ) |
| 9 | 1 8 | syl | |- ( D e. A -> ( B C_ A -> ( B u. { D } ) C_ A ) ) |
| 10 | ssun3 | |- ( A C_ C -> A C_ ( C u. { D } ) ) |
|
| 11 | 10 | a1i | |- ( D e. A -> ( A C_ C -> A C_ ( C u. { D } ) ) ) |
| 12 | 9 11 | anim12d | |- ( D e. A -> ( ( B C_ A /\ A C_ C ) -> ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) ) ) |
| 13 | pm4.72 | |- ( ( ( B C_ A /\ A C_ C ) -> ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) ) <-> ( ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) <-> ( ( B C_ A /\ A C_ C ) \/ ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) ) ) ) |
|
| 14 | 12 13 | sylib | |- ( D e. A -> ( ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) <-> ( ( B C_ A /\ A C_ C ) \/ ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) ) ) ) |
| 15 | 6 14 | bitrd | |- ( D e. A -> ( ( B C_ A /\ A C_ ( C u. { D } ) ) <-> ( ( B C_ A /\ A C_ C ) \/ ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) ) ) ) |
| 16 | uncom | |- ( { D } u. C ) = ( C u. { D } ) |
|
| 17 | 16 | sseq2i | |- ( A C_ ( { D } u. C ) <-> A C_ ( C u. { D } ) ) |
| 18 | ssundif | |- ( A C_ ( { D } u. C ) <-> ( A \ { D } ) C_ C ) |
|
| 19 | 17 18 | bitr3i | |- ( A C_ ( C u. { D } ) <-> ( A \ { D } ) C_ C ) |
| 20 | disjsn | |- ( ( A i^i { D } ) = (/) <-> -. D e. A ) |
|
| 21 | disj3 | |- ( ( A i^i { D } ) = (/) <-> A = ( A \ { D } ) ) |
|
| 22 | 20 21 | bitr3i | |- ( -. D e. A <-> A = ( A \ { D } ) ) |
| 23 | sseq1 | |- ( A = ( A \ { D } ) -> ( A C_ C <-> ( A \ { D } ) C_ C ) ) |
|
| 24 | 22 23 | sylbi | |- ( -. D e. A -> ( A C_ C <-> ( A \ { D } ) C_ C ) ) |
| 25 | 19 24 | bitr4id | |- ( -. D e. A -> ( A C_ ( C u. { D } ) <-> A C_ C ) ) |
| 26 | 25 | anbi2d | |- ( -. D e. A -> ( ( B C_ A /\ A C_ ( C u. { D } ) ) <-> ( B C_ A /\ A C_ C ) ) ) |
| 27 | 3 | simplbi | |- ( ( B u. { D } ) C_ A -> B C_ A ) |
| 28 | 27 | a1i | |- ( -. D e. A -> ( ( B u. { D } ) C_ A -> B C_ A ) ) |
| 29 | 25 | biimpd | |- ( -. D e. A -> ( A C_ ( C u. { D } ) -> A C_ C ) ) |
| 30 | 28 29 | anim12d | |- ( -. D e. A -> ( ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) -> ( B C_ A /\ A C_ C ) ) ) |
| 31 | pm4.72 | |- ( ( ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) -> ( B C_ A /\ A C_ C ) ) <-> ( ( B C_ A /\ A C_ C ) <-> ( ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) \/ ( B C_ A /\ A C_ C ) ) ) ) |
|
| 32 | 30 31 | sylib | |- ( -. D e. A -> ( ( B C_ A /\ A C_ C ) <-> ( ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) \/ ( B C_ A /\ A C_ C ) ) ) ) |
| 33 | orcom | |- ( ( ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) \/ ( B C_ A /\ A C_ C ) ) <-> ( ( B C_ A /\ A C_ C ) \/ ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) ) ) |
|
| 34 | 32 33 | bitrdi | |- ( -. D e. A -> ( ( B C_ A /\ A C_ C ) <-> ( ( B C_ A /\ A C_ C ) \/ ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) ) ) ) |
| 35 | 26 34 | bitrd | |- ( -. D e. A -> ( ( B C_ A /\ A C_ ( C u. { D } ) ) <-> ( ( B C_ A /\ A C_ C ) \/ ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) ) ) ) |
| 36 | 15 35 | pm2.61i | |- ( ( B C_ A /\ A C_ ( C u. { D } ) ) <-> ( ( B C_ A /\ A C_ C ) \/ ( ( B u. { D } ) C_ A /\ A C_ ( C u. { D } ) ) ) ) |