This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Possible values for a set sandwiched between another set and it plus a singleton. (Contributed by Mario Carneiro, 2-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssunsn | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssunsn2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∨ ( ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ) ) | |
| 2 | ancom | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
| 3 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
| 4 | 2 3 | bitr4i | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ↔ 𝐴 = 𝐵 ) |
| 5 | ancom | ⊢ ( ( ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ ( 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ∧ ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ) ) | |
| 6 | eqss | ⊢ ( 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ↔ ( 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ∧ ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ) ) | |
| 7 | 5 6 | bitr4i | ⊢ ( ( ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) |
| 8 | 4 7 | orbi12i | ⊢ ( ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) ∨ ( ( 𝐵 ∪ { 𝐶 } ) ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) ) |
| 9 | 1 8 | bitri | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ ( 𝐵 ∪ { 𝐶 } ) ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = ( 𝐵 ∪ { 𝐶 } ) ) ) |