This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lattice join of a subset with its orthocomplement is the whole space. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssjo | ⊢ ( 𝐴 ⊆ ℋ → ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) = ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocss | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) | |
| 2 | sshjval | ⊢ ( ( 𝐴 ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) → ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ) ) | |
| 3 | 1 2 | mpdan | ⊢ ( 𝐴 ⊆ ℋ → ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ) ) |
| 4 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) | |
| 5 | 1 | ancli | ⊢ ( 𝐴 ⊆ ℋ → ( 𝐴 ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) ) |
| 6 | unss | ⊢ ( ( 𝐴 ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) ↔ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ⊆ ℋ ) | |
| 7 | 5 6 | sylib | ⊢ ( 𝐴 ⊆ ℋ → ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ⊆ ℋ ) |
| 8 | occon | ⊢ ( ( 𝐴 ⊆ ℋ ∧ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ⊆ ℋ ) → ( 𝐴 ⊆ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) → ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) | |
| 9 | 7 8 | mpdan | ⊢ ( 𝐴 ⊆ ℋ → ( 𝐴 ⊆ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) → ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 10 | 4 9 | mpi | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 11 | ssun2 | ⊢ ( ⊥ ‘ 𝐴 ) ⊆ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) | |
| 12 | occon | ⊢ ( ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ ∧ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ⊆ ℋ ) → ( ( ⊥ ‘ 𝐴 ) ⊆ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) → ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) | |
| 13 | 1 7 12 | syl2anc | ⊢ ( 𝐴 ⊆ ℋ → ( ( ⊥ ‘ 𝐴 ) ⊆ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) → ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 14 | 11 13 | mpi | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 15 | 10 14 | ssind | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ⊆ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 16 | ocsh | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ∈ Sℋ ) | |
| 17 | ocin | ⊢ ( ( ⊥ ‘ 𝐴 ) ∈ Sℋ → ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0ℋ ) | |
| 18 | 16 17 | syl | ⊢ ( 𝐴 ⊆ ℋ → ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) = 0ℋ ) |
| 19 | 15 18 | sseqtrd | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ⊆ 0ℋ ) |
| 20 | ocsh | ⊢ ( ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ⊆ ℋ → ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ∈ Sℋ ) | |
| 21 | sh0le | ⊢ ( ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ∈ Sℋ → 0ℋ ⊆ ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ) | |
| 22 | 7 20 21 | 3syl | ⊢ ( 𝐴 ⊆ ℋ → 0ℋ ⊆ ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 23 | 19 22 | eqssd | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) = 0ℋ ) |
| 24 | 23 | fveq2d | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ) = ( ⊥ ‘ 0ℋ ) ) |
| 25 | choc0 | ⊢ ( ⊥ ‘ 0ℋ ) = ℋ | |
| 26 | 24 25 | eqtrdi | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ ( ⊥ ‘ 𝐴 ) ) ) ) = ℋ ) |
| 27 | 3 26 | eqtrd | ⊢ ( 𝐴 ⊆ ℋ → ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐴 ) ) = ℋ ) |