This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lattice join of a subset with its orthocomplement is the whole space. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssjo | |- ( A C_ ~H -> ( A vH ( _|_ ` A ) ) = ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ocss | |- ( A C_ ~H -> ( _|_ ` A ) C_ ~H ) |
|
| 2 | sshjval | |- ( ( A C_ ~H /\ ( _|_ ` A ) C_ ~H ) -> ( A vH ( _|_ ` A ) ) = ( _|_ ` ( _|_ ` ( A u. ( _|_ ` A ) ) ) ) ) |
|
| 3 | 1 2 | mpdan | |- ( A C_ ~H -> ( A vH ( _|_ ` A ) ) = ( _|_ ` ( _|_ ` ( A u. ( _|_ ` A ) ) ) ) ) |
| 4 | ssun1 | |- A C_ ( A u. ( _|_ ` A ) ) |
|
| 5 | 1 | ancli | |- ( A C_ ~H -> ( A C_ ~H /\ ( _|_ ` A ) C_ ~H ) ) |
| 6 | unss | |- ( ( A C_ ~H /\ ( _|_ ` A ) C_ ~H ) <-> ( A u. ( _|_ ` A ) ) C_ ~H ) |
|
| 7 | 5 6 | sylib | |- ( A C_ ~H -> ( A u. ( _|_ ` A ) ) C_ ~H ) |
| 8 | occon | |- ( ( A C_ ~H /\ ( A u. ( _|_ ` A ) ) C_ ~H ) -> ( A C_ ( A u. ( _|_ ` A ) ) -> ( _|_ ` ( A u. ( _|_ ` A ) ) ) C_ ( _|_ ` A ) ) ) |
|
| 9 | 7 8 | mpdan | |- ( A C_ ~H -> ( A C_ ( A u. ( _|_ ` A ) ) -> ( _|_ ` ( A u. ( _|_ ` A ) ) ) C_ ( _|_ ` A ) ) ) |
| 10 | 4 9 | mpi | |- ( A C_ ~H -> ( _|_ ` ( A u. ( _|_ ` A ) ) ) C_ ( _|_ ` A ) ) |
| 11 | ssun2 | |- ( _|_ ` A ) C_ ( A u. ( _|_ ` A ) ) |
|
| 12 | occon | |- ( ( ( _|_ ` A ) C_ ~H /\ ( A u. ( _|_ ` A ) ) C_ ~H ) -> ( ( _|_ ` A ) C_ ( A u. ( _|_ ` A ) ) -> ( _|_ ` ( A u. ( _|_ ` A ) ) ) C_ ( _|_ ` ( _|_ ` A ) ) ) ) |
|
| 13 | 1 7 12 | syl2anc | |- ( A C_ ~H -> ( ( _|_ ` A ) C_ ( A u. ( _|_ ` A ) ) -> ( _|_ ` ( A u. ( _|_ ` A ) ) ) C_ ( _|_ ` ( _|_ ` A ) ) ) ) |
| 14 | 11 13 | mpi | |- ( A C_ ~H -> ( _|_ ` ( A u. ( _|_ ` A ) ) ) C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 15 | 10 14 | ssind | |- ( A C_ ~H -> ( _|_ ` ( A u. ( _|_ ` A ) ) ) C_ ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` A ) ) ) ) |
| 16 | ocsh | |- ( A C_ ~H -> ( _|_ ` A ) e. SH ) |
|
| 17 | ocin | |- ( ( _|_ ` A ) e. SH -> ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` A ) ) ) = 0H ) |
|
| 18 | 16 17 | syl | |- ( A C_ ~H -> ( ( _|_ ` A ) i^i ( _|_ ` ( _|_ ` A ) ) ) = 0H ) |
| 19 | 15 18 | sseqtrd | |- ( A C_ ~H -> ( _|_ ` ( A u. ( _|_ ` A ) ) ) C_ 0H ) |
| 20 | ocsh | |- ( ( A u. ( _|_ ` A ) ) C_ ~H -> ( _|_ ` ( A u. ( _|_ ` A ) ) ) e. SH ) |
|
| 21 | sh0le | |- ( ( _|_ ` ( A u. ( _|_ ` A ) ) ) e. SH -> 0H C_ ( _|_ ` ( A u. ( _|_ ` A ) ) ) ) |
|
| 22 | 7 20 21 | 3syl | |- ( A C_ ~H -> 0H C_ ( _|_ ` ( A u. ( _|_ ` A ) ) ) ) |
| 23 | 19 22 | eqssd | |- ( A C_ ~H -> ( _|_ ` ( A u. ( _|_ ` A ) ) ) = 0H ) |
| 24 | 23 | fveq2d | |- ( A C_ ~H -> ( _|_ ` ( _|_ ` ( A u. ( _|_ ` A ) ) ) ) = ( _|_ ` 0H ) ) |
| 25 | choc0 | |- ( _|_ ` 0H ) = ~H |
|
| 26 | 24 25 | eqtrdi | |- ( A C_ ~H -> ( _|_ ` ( _|_ ` ( A u. ( _|_ ` A ) ) ) ) = ~H ) |
| 27 | 3 26 | eqtrd | |- ( A C_ ~H -> ( A vH ( _|_ ` A ) ) = ~H ) |