This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shne0.1 | ⊢ 𝐴 ∈ Sℋ | |
| Assertion | shne0i | ⊢ ( 𝐴 ≠ 0ℋ ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shne0.1 | ⊢ 𝐴 ∈ Sℋ | |
| 2 | df-ne | ⊢ ( 𝐴 ≠ 0ℋ ↔ ¬ 𝐴 = 0ℋ ) | |
| 3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 0ℋ ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 0ℋ ) ) | |
| 4 | nss | ⊢ ( ¬ 𝐴 ⊆ 0ℋ ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 0ℋ ) ) | |
| 5 | shle0 | ⊢ ( 𝐴 ∈ Sℋ → ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) ) | |
| 6 | 1 5 | ax-mp | ⊢ ( 𝐴 ⊆ 0ℋ ↔ 𝐴 = 0ℋ ) |
| 7 | 6 | notbii | ⊢ ( ¬ 𝐴 ⊆ 0ℋ ↔ ¬ 𝐴 = 0ℋ ) |
| 8 | 3 4 7 | 3bitr2ri | ⊢ ( ¬ 𝐴 = 0ℋ ↔ ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 0ℋ ) |
| 9 | elch0 | ⊢ ( 𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ ) | |
| 10 | 9 | necon3bbii | ⊢ ( ¬ 𝑥 ∈ 0ℋ ↔ 𝑥 ≠ 0ℎ ) |
| 11 | 10 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 0ℋ ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ ) |
| 12 | 2 8 11 | 3bitri | ⊢ ( 𝐴 ≠ 0ℋ ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ ) |