This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sshjval | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | ⊢ ℋ ∈ V | |
| 2 | 1 | elpw2 | ⊢ ( 𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ ) |
| 3 | 1 | elpw2 | ⊢ ( 𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ ) |
| 4 | uneq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 ∪ 𝑦 ) = ( 𝐴 ∪ 𝐵 ) ) | |
| 5 | 4 | fveq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ⊥ ‘ ( 𝑥 ∪ 𝑦 ) ) = ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 6 | 5 | fveq2d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ⊥ ‘ ( ⊥ ‘ ( 𝑥 ∪ 𝑦 ) ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 7 | df-chj | ⊢ ∨ℋ = ( 𝑥 ∈ 𝒫 ℋ , 𝑦 ∈ 𝒫 ℋ ↦ ( ⊥ ‘ ( ⊥ ‘ ( 𝑥 ∪ 𝑦 ) ) ) ) | |
| 8 | fvex | ⊢ ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ∈ V | |
| 9 | 6 7 8 | ovmpoa | ⊢ ( ( 𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 10 | 2 3 9 | syl2anbr | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |