This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | occon | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ 𝐵 → ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ·ih 𝑦 ) = 0 → ∀ 𝑦 ∈ 𝐴 ( 𝑥 ·ih 𝑦 ) = 0 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ ℋ ) → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ·ih 𝑦 ) = 0 → ∀ 𝑦 ∈ 𝐴 ( 𝑥 ·ih 𝑦 ) = 0 ) ) |
| 3 | 2 | ss2rabdv | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ·ih 𝑦 ) = 0 } ⊆ { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } ) |
| 4 | 3 | adantl | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) ∧ 𝐴 ⊆ 𝐵 ) → { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ·ih 𝑦 ) = 0 } ⊆ { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } ) |
| 5 | ocval | ⊢ ( 𝐵 ⊆ ℋ → ( ⊥ ‘ 𝐵 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ·ih 𝑦 ) = 0 } ) | |
| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( ⊥ ‘ 𝐵 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ·ih 𝑦 ) = 0 } ) |
| 7 | ocval | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( ⊥ ‘ 𝐴 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐴 ( 𝑥 ·ih 𝑦 ) = 0 } ) |
| 9 | 4 6 8 | 3sstr4d | ⊢ ( ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) ∧ 𝐴 ⊆ 𝐵 ) → ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 10 | 9 | ex | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ⊆ 𝐵 → ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |