This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism, analogous to ringrghm . (Contributed by AV, 23-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srglmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| srglmhm.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | srgrmhm | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srglmhm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | srglmhm.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | srgmnd | ⊢ ( 𝑅 ∈ SRing → 𝑅 ∈ Mnd ) | |
| 4 | 3 3 | jca | ⊢ ( 𝑅 ∈ SRing → ( 𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd ) ) |
| 6 | 1 2 | srgcl | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 · 𝑋 ) ∈ 𝐵 ) |
| 7 | 6 | 3com23 | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · 𝑋 ) ∈ 𝐵 ) |
| 8 | 7 | 3expa | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 · 𝑋 ) ∈ 𝐵 ) |
| 9 | 8 | fmpttd | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) : 𝐵 ⟶ 𝐵 ) |
| 10 | 3anrot | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ↔ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) | |
| 11 | 3anass | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ) | |
| 12 | 10 11 | bitr3i | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ) |
| 13 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 14 | 1 13 2 | srgdir | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) · 𝑋 ) = ( ( 𝑎 · 𝑋 ) ( +g ‘ 𝑅 ) ( 𝑏 · 𝑋 ) ) ) |
| 15 | 12 14 | sylan2br | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ) → ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) · 𝑋 ) = ( ( 𝑎 · 𝑋 ) ( +g ‘ 𝑅 ) ( 𝑏 · 𝑋 ) ) ) |
| 16 | 15 | anassrs | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) · 𝑋 ) = ( ( 𝑎 · 𝑋 ) ( +g ‘ 𝑅 ) ( 𝑏 · 𝑋 ) ) ) |
| 17 | 1 13 | srgacl | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 18 | 17 | 3expb | ⊢ ( ( 𝑅 ∈ SRing ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 19 | 18 | adantlr | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
| 20 | oveq1 | ⊢ ( 𝑥 = ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) → ( 𝑥 · 𝑋 ) = ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) · 𝑋 ) ) | |
| 21 | eqid | ⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) | |
| 22 | ovex | ⊢ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) · 𝑋 ) ∈ V | |
| 23 | 20 21 22 | fvmpt | ⊢ ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) · 𝑋 ) ) |
| 24 | 19 23 | syl | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) · 𝑋 ) ) |
| 25 | oveq1 | ⊢ ( 𝑥 = 𝑎 → ( 𝑥 · 𝑋 ) = ( 𝑎 · 𝑋 ) ) | |
| 26 | ovex | ⊢ ( 𝑎 · 𝑋 ) ∈ V | |
| 27 | 25 21 26 | fvmpt | ⊢ ( 𝑎 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑎 ) = ( 𝑎 · 𝑋 ) ) |
| 28 | oveq1 | ⊢ ( 𝑥 = 𝑏 → ( 𝑥 · 𝑋 ) = ( 𝑏 · 𝑋 ) ) | |
| 29 | ovex | ⊢ ( 𝑏 · 𝑋 ) ∈ V | |
| 30 | 28 21 29 | fvmpt | ⊢ ( 𝑏 ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑏 ) = ( 𝑏 · 𝑋 ) ) |
| 31 | 27 30 | oveqan12d | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑏 ) ) = ( ( 𝑎 · 𝑋 ) ( +g ‘ 𝑅 ) ( 𝑏 · 𝑋 ) ) ) |
| 32 | 31 | adantl | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑏 ) ) = ( ( 𝑎 · 𝑋 ) ( +g ‘ 𝑅 ) ( 𝑏 · 𝑋 ) ) ) |
| 33 | 16 24 32 | 3eqtr4d | ⊢ ( ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑏 ) ) ) |
| 34 | 33 | ralrimivva | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑏 ) ) ) |
| 35 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 36 | 1 35 | srg0cl | ⊢ ( 𝑅 ∈ SRing → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 37 | 36 | adantr | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 38 | oveq1 | ⊢ ( 𝑥 = ( 0g ‘ 𝑅 ) → ( 𝑥 · 𝑋 ) = ( ( 0g ‘ 𝑅 ) · 𝑋 ) ) | |
| 39 | ovex | ⊢ ( ( 0g ‘ 𝑅 ) · 𝑋 ) ∈ V | |
| 40 | 38 21 39 | fvmpt | ⊢ ( ( 0g ‘ 𝑅 ) ∈ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 0g ‘ 𝑅 ) ) = ( ( 0g ‘ 𝑅 ) · 𝑋 ) ) |
| 41 | 37 40 | syl | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 0g ‘ 𝑅 ) ) = ( ( 0g ‘ 𝑅 ) · 𝑋 ) ) |
| 42 | 1 2 35 | srglz | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) · 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
| 43 | 41 42 | eqtrd | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 44 | 9 34 43 | 3jca | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑏 ) ) ∧ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) |
| 45 | 1 1 13 13 35 35 | ismhm | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ↔ ( ( 𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd ) ∧ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) : 𝐵 ⟶ 𝐵 ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑎 ) ( +g ‘ 𝑅 ) ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ 𝑏 ) ) ∧ ( ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) ) ) |
| 46 | 5 44 45 | sylanbrc | ⊢ ( ( 𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝑥 · 𝑋 ) ) ∈ ( 𝑅 MndHom 𝑅 ) ) |